Emblica officinalis (amla) ameliorates arsenic-induced liver damage via DNA protection by antioxidant systems


Present study demonstrates the therapeutic role of Emblica officinalis (EO) against arsenic-induced DNA and hepatic damage in female rats. Our earlier study on arsenic-exposed human unveils a link between tissue necrosis and carcinogenesis with impaired antioxidant system-associated DNA damage. Here we show ingestion of EO extract (500 mg in 0.1 mL water) in combination with sodium arsenite (0.4 ppm)/100 g b.w. for 24 days to rats offered significant protection against arsenic-induced oxidative damages of DNA and hepatic tissue architecture. Arsenic only exposure decreased hepatic superoxide dismutase, catalase activities and the level of non protein soluble thiol with a concomitant increase in thiobarbituric acid reactive substances and conjugated di-enes which are restrained by EO with a restoration of antioxidant components. In conclusion, restricted generation of free radicals is correlated to DNA protection resulting in prevention of tissue necrosis and possible carcinogenesis.

This is a preview of subscription content, access via your institution.


  1. 1.

    Roy, P. & Saha, A. Metabolism and toxicity of arsenic: A human carcinogen. Curr Sci 82:38–45 (2002).

    CAS  Google Scholar 

  2. 2.

    Rahman, M. M., Nag, J. C. & Naidu, R. Chronic exposure of arsenic via drinking water and its adverse health impacts on humans. Environ Geochem Health 31Suppl 1:189–200 (2009).

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Pott, W. A., Benjamin, S. A. & Yang, R. S. Pharmacokinetics, metabolism, and carcinogenicity of arsenic. Rev Environ Contam Toxicol 169:165–214 (2001).

    CAS  PubMed  Google Scholar 

  4. 4.

    Maiti, S. et al. Antioxidant and metabolic impairment result in DNA damage in arsenic-exposed individuals with severe dermatological manifestations in Eastern India. Environ Toxicol (2010) [Epub ahead of print] PubMed PMID: 20925122

    Google Scholar 

  5. 5.

    Maiti, S. & Chatterjee, A. K. Effects on levels of glutathione and some related enzymes in tissues after an acute arsenic exposure in rats and their relationship to dietary protein deficiency. Arch Toxicol 75:531–537 (2001).

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Yamanaka, K. et al. Induction of DNA damage by dimethylarsine, a metabolite of inorganic arsenics, is for the major part likely due to its peroxyl radical. Biochem Res Commun 168:58–64 (1990).

    CAS  Article  Google Scholar 

  7. 7.

    Inns, R. H., Rice, P., Bright, J. E. & Marrs, T. C. Evaluation of the efficacy of dimercapto chelating agents for the treatment of systemic organic arsenic poisoning in rabbits. Hum Exp Toxicol 9:215–220 (1990).

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Chattopadhyay, S., Ghosh, S., Debnath, J. & Ghosh, D. Protection of sodium arsenite-induced ovarian toxicity by coadministration of L-ascorbate (vitamin C) in mature wistar strain rat. Arch Environ Contam Toxicol 41:83–89 (2001).

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Mahata, J. et al. Effect of selenium and vitamin e supplementation on plasma protein carbonyl levels in patients with arsenic-related skin lesions. Nutr Cancer 60:55–60 (2008).

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Chattopadhyay, S. & Ghosh, D. The involvement of hypophyseal-gonadal and hypophyseal-adrenal axes in arsenic-mediated ovarian and uterine toxicity: modulation by hCG. J Biochem Mol Toxicol 24:29–41 (2010).

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Chattopadhyay, S. et al. Protective role of Moringa oleifera (Sajina) seed on arsenic-induced hepatocellular degeneration in female albino rats. Biol Trace Elem Res 142:200–212 (2011).

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Ghosh, D. et al. Quercetin in vesicular delivery systems: evaluation in combating arsenic-induced acute liver toxicity associated gene expression in rat model. Chem Biol Interact 186:61–71 (2010).

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Mishra, D. et al. Co-administration of monoisoamyl dimercaptosuccinic acid and Moringa oleifera seed powder protects arsenic-induced oxidative stress and metal distribution in mice. Toxicol Mech Methods 19:169–182 (2009).

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Talwar, G. P. et al. A novel polyherbal microbicide with inhibitory effect on bacterial, fungal and viral genital pathogens. Int J Antimicrob Agents 32:180–185 (2008).

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Ngamkitidechakul, C., Jaijoy, K. & Hansakul, P. Anti-tumour effects of Phyllanthus emblica L.: induction of cancer cell apoptosis and inhibition of in vivo tumour promotion and in vitro invasion of human cancer cells. Phytother Res 24:1405–1413 (2010).

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Yokozawa, T. et al. Amla (Emblica officinalis Gaertn.) prevents dyslipidaemia and oxidative stress in the ageing process. Br J Nutr 97:1187–1195 (2007).

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Sharma, A., Sharma, M. K. & Kumar, M. Modulatory role of Emblica officinalis fruit extract against arsenic induced oxidative stress in Swiss albino mice. Chem Biol Interact 180:20–30 (2009).

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Bergmeyer, H. U., Hørder, M. & Rej, R. International Federation of Clinical Chemistry (IFCC) Scientific Committee, Analytical Section: approved recommendation (1985) on IFCC methods for the measurement of catalytic concentration of enzymes. Part 2. IFCC method for aspartate aminotransferase (L-aspartate: 2-oxoglutarate aminotransferase, EC J Clin Chem Clin Biochem 24:497–510 (1986).

    CAS  PubMed  Google Scholar 

  19. 19.

    Schumann, G. et al. International Federation of Clinical Chemistry and Laboratory Medicine. IFCC primary reference procedures for the measurement of catalytic activity concentrations of enzymes at 37 degrees C. International Federation of Clinical Chemistry and Laboratory Medicine. Part 4. Reference procedure for the measurement of catalytic concentration of alanine aminotransferase. Clin Chem Lab Med 40:718–724 (2002).

    CAS  PubMed  Google Scholar 

  20. 20.

    Copeland, W. H., Nealon, D. A. & Rej, R. Effects of temperature on measurement of alkaline phosphatase activity. Clin Chem 31:185–190 (1985).

    CAS  PubMed  Google Scholar 

  21. 21.

    Gornall, A. G. et al. Determination of serum proteins by means of the biuret reaction. J Biol Chem 177:751–766 (1949).

    CAS  PubMed  Google Scholar 

  22. 22.

    Fawcett, J. K. & Scott, J. E. A rapid and precise method for the determination of urea. J Clin Pathol 13:156–159 (1960).

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  23. 23.

    Bowers, L. D. Kinetic serum creatinine assays I. The role of various factors in determining specificity. Clin Chem 26:551–554 (1980)

    CAS  PubMed  Google Scholar 

  24. 24.

    Allain, C. C., Poon, L. S., Chan, C. S., Richmond, W. & Fu, P. C. Enzymatic determination of total serum cholesterol. Clin Chem 20:470–475 (1974).

    CAS  PubMed  Google Scholar 

  25. 25.

    Werner, M., Gabrielson, D. G. & Eastman, J. Ultramicro determination of serum triglycerides by bioluminescent assay. Clin Chem 27:268–271 (1981).

    CAS  PubMed  Google Scholar 

  26. 26.

    Buege, J. A. & Aust, S. D. Microsomal lipid peroxidation. Methods Enzymol 52:302–310 (1978).

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Maiti, S. & Chatterjee, A. K. Differential response of cellular antioxidant mechanism of liver and kidney to arsenic exposure and its relation to dietary protein deficiency. Environ Toxicol Pharmacol 8:227–235 (2000).

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Slater, T. F. Overview of methods used for detecting lipid peroxidation. Methods Enzymol 105:283–293 (1984).

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Paoletti, F. & Mocali, A. Determination of superoxide dismutase activity by purely chemical system based on NAD(P)H oxidation. Methods Enzymol 186:209–220 (1990).

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Sinha, A. K. Colorimetric assay of catalase. Anal Biochem 47:389–394 (1972).

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Forman, H. J. Critical methods in Free Radical Biology & Medicine. Free Radic Biol Med 47 Suppl 2:S207 (2009).

    Article  Google Scholar 

  32. 32.

    Garcia-Martinez, V. et al. Internucleosomal DNA fragmentation and programmed cell death (apoptosis) in the interdigital tissue of the embryonic chick leg bud. J Cell Sci 106:201–208 (1993).

    CAS  PubMed  Google Scholar 

  33. 33.

    Schmitt, C. J. & Dethloff, G. M. Biomonitoring of Environmental Status and Trends (BEST) Program: Selected Methods for Monitoring Chemical Contaminants and their Effects in Aquatic Ecosystems. Information and Technology Report USGS/BRD/ITR (2000–2005).

    Google Scholar 

  34. 34.

    Liu, K. T. et al. Adverse effects of combined arsenic and fluoride on liver and kidney in rats. Fluoride 32:243–247 (1999).

    CAS  Google Scholar 

  35. 35.

    Karimov, Kh.Ia., Inoiatova, F.Kh. & Inoiatov, F.Sh. Toxic effects of various water pollutants on structural and functional parameters of hepatocytes. Vopr Med Khim 48:174–179 (2002).

    CAS  Google Scholar 

  36. 36.

    Palaniappan, P. R. & Vijayasundaram, V. FTIR study of arsenic induced biochemical changes on the liver tissues of fresh water fingerlings Labeo rohita. Rom J Biophys 18:135–144 (2008).

    CAS  Google Scholar 

  37. 37.

    World Health Organization. Environmental Health Criteria 18: Arsenic. Geneva: WHO International Programme on Chemical Safety; 1981.

    Google Scholar 

  38. 38.

    Chen, C. J., Chiou, H. Y., Chiang, M. H., Lin, L. J. & Tai, T. Y. Dose-response relationship between ischemic heart disease mortality and long-term arsenic exposure. Arterioscler. Thromb Vasc Biol 16:504–510 (1996).

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Li, M., Cai, J. F. & Chiu, J. F. Arsenic induces oxidative stress and activates stress gene expressions in cultured lung epithelial cells. J Cell Biochem 87:29–38 (2002).

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Dhir, H., Agarwal, K., Sharma, A. & Talukder, G. Modifying role of Phyllanthus emblica and ascorbic acid against nickel clastogenicity in mice. Cancer Lett 59:9–18 (1991).

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Poltanov, E. A. et al. Chemical and antioxidant evaluation of Indian gooseberry (Emblica officinalis Gaertn., syn. Phyllanthus emblica L.) supplements. Phytother Res 23:1309–1315 (2009).

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Sumitra, M., Manikandan, P., Gayathri, V. S., Mahendran, P. & Suguna, L. Emblica officinalis exerts wound healing action through up-regulation of collagen and extracellular signal-regulated kinases (ERK1/2). Wound Repair Regen 17:99–107 (2009).

    PubMed  Article  Google Scholar 

  43. 43.

    Naik, G. H. et al. In vitro antioxidant studies and free radical reactions of triphala, an ayurvedic formulation and its constituents. Phytother Res 19:582–586 (2005).

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Sultana, S., Ahmad, S., Khan, N. & Jahangir, T. Effect of Emblica officinalis (Gaertn) on CCl4 induced hepatic toxicity and DNA synthesis in Wistar rats. Indian J Exp Biol 43:430–436 (2005).

    PubMed  Google Scholar 

  45. 45.

    Pandey, G. & Pandey, S. P. Phytochemical and toxicity study of E. Officinalis (amla). Int Res J Pharm 2:270–272 (2011).

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Smarajit Maiti.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maiti, S., Chattopadhyay, S., Acharyya, N. et al. Emblica officinalis (amla) ameliorates arsenic-induced liver damage via DNA protection by antioxidant systems. Mol. Cell. Toxicol. 10, 75–82 (2014). https://doi.org/10.1007/s13273-014-0009-8

Download citation


  • Arsenic
  • Antioxidant systems
  • DNA fragmentation
  • Hepatic carcinogenesis
  • Emblica officinalis