Molecular & Cellular Toxicology

, Volume 10, Issue 1, pp 59–66 | Cite as

Adenosine A2a receptors activate Nuclear Factor-Kappa B (NF-κB) in rat hippocampus after exposure to different doses of MDMA

  • Fatemeh Kermanian
  • Mehdi Mehdizadeh
  • Mansooreh Soleimani
  • Ali Reza Ebrahimzadeh Bideskan
  • Javad Hami
  • Hamed Kheradmand
  • Hossein Haghir
Original Paper


MDMA (3,4-methylenedioxy-N-methamphetamine) as an empathogenic drug causes neurotoxicity although the mechanisms have not been fully elucidated. The A2a adenosine receptor modulates the reinforcement efficacy and neurotoxicity of MDMA. A2a receptor activation inhibits Nuclear Factor-Kappa B (NF-κB) activation and nuclear translocation by a known mechanism. In the present study, we aimed to compare the NF-κB activity level in rat hippocampus between two doses of MDMA exposure (10 and 20 mg /kg) using either A2aR agonist (CGS) or A2aR antagonist (SCH). Adult male Sprague-Dawley rats were subjected to MDMA followed by intraperitoneal CGS (0.03 mg/kg) or SCH (0.03 mg/kg) injection. The hippocampi were then removed for western blot and RTPCR analyses. Administration of MDMA dose-dependently increased the expression of NF-κB both at mRNA and protein levels. We also found that administration of CGS following MDMA significantly increased the NF-κB expression especially in MDMA 20 +CGS group. By contrast, administration of the A2a-R antagonist SCH resulted in a dose-dependent decrease in NF-κB mRNA and protein. Our study results revealed that MDMA has powerful detrimental effects on expression of NF-κB in a dose-dependent manner. On the other hand, co-administration of A2a agonist (CGS) can protect against MDMA neurotoxic effects by increasing NF-κB expression levels; suggesting a potential application for protection against the neurotoxic effects observed in MDMA users.


MDMA NF-κB A2a receptor CGS SCH 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O’Callaghan, J. P. & Miller, D. B. Neurotoxic effects of substituted amphetamines in rats and mice. in Handbook of Neurotoxicology (ed. Massaro, E.J.) 269–301 (Human Press NJ., Totowa, 2005).Google Scholar
  2. 2.
    Jimenez, A. et al. Neurotoxicity of amphetamine derivatives is mediated by caspase pathway activation in rat cerebellar granule cells. Toxicol Appl Pharmacol 196:223–234 (2004).PubMedCrossRefGoogle Scholar
  3. 3.
    Schmidt, C. J. Neurotoxicity of the psychedelic amphetamine, methylenedioxymethamphetamine. J Pharmacol Exp Ther 240:1–7 (1987).PubMedGoogle Scholar
  4. 4.
    Stone, D. M., Stahl, D. C., Hanson, G. R. & Gibb, J. W. The effects of 3,4-methylenedioxymethamphetamine (MDMA) and 3,4-methylenedioxyamphetamine (MDA) on monoaminergic systems in the rat brain. Eur J Pharmacol 128:41–48 (1986).PubMedCrossRefGoogle Scholar
  5. 5.
    Darvesh, A. S. & Gudelsky, G. A. Evidence for a role of energy dysregulation in the MDMA-induced depletion of brain 5-HT. Brain Res 1056:168–175 (2005).PubMedCrossRefGoogle Scholar
  6. 6.
    Dluzen, D. E. et al. Markers associated with sex differences in methamphetamine-induced striatal dopamine neurotoxicity. Curr Neuropharmacol 9:40–44 (2011).PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Fredholm, B. B. et al. Nomenclature and classification of purinoceptors. Pharmacol Rev 46:143–156 (1994).PubMedGoogle Scholar
  8. 8.
    Ribeiro, J. A., Sebastiao, A. M. & de Mendonca, A. Participation of adenosine receptors in neuroprotection. Drug News Perspect 16:80–86 (2003).PubMedCrossRefGoogle Scholar
  9. 9.
    Fredholm, B. B., AP, I. J., Jacobson, K. A., Klotz, K. N. & Linden, J. International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53:527–552 (2001).PubMedGoogle Scholar
  10. 10.
    Fontinha, B.M. et al. Adenosine A (2A) receptor modulation of hippocampal CA3-CA1 synapse plasticity during associative learning in behaving mice. Neuropsychopharmacology 34:1865–1874 (2009).PubMedCrossRefGoogle Scholar
  11. 11.
    Ruiz-Medina, J., Ledent, C., Carreton, O. & Valverde, O. The A2a adenosine receptor modulates the reinforcement efficacy and neurotoxicity of MDMA. J Psychopharmacol 25:550–564 (2011).PubMedCrossRefGoogle Scholar
  12. 12.
    Kaplan, G. B. & Sears, M. T. Adenosine receptor agonists attenuate and adenosine receptor antagonists exacerbate opiate withdrawal signs. Psychopharmacology (Berl) 123:64–70 (1996).CrossRefGoogle Scholar
  13. 13.
    Salem, A. & Hope, W. Effect of adenosine receptor agonists and antagonists on the expression of opiate withdrawal in rats. Pharmacol Biochem Behav 57:671–679 (1997).PubMedCrossRefGoogle Scholar
  14. 14.
    Calfee-Mason, K. G., Lee, E. Y., Spear, B. T. & Glauert, H. P. Role of the p50 subunit of NF-kappaB in vitamin E-induced changes in mice treated with the peroxisome proliferator, ciprofibrate. Food Chem Toxicol 46:2062–2073 (2008).PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Pennypacker, K. R., Kassed, C. A., Eidizadeh, S. & O’Callaghan, J. P. Brain injury: prolonged induction of transcription factors. Acta Neurobiol Exp (Wars) 60: 515–530 (2000).Google Scholar
  16. 16.
    Yamamoto, Y. & Gaynor, R. B. IkappaB kinases: key regulators of the NF-kappaB pathway. Trends Biochem Sci 29:72–79 (2004).PubMedCrossRefGoogle Scholar
  17. 17.
    Tiangco, D. A. et al. 3,4-Methylenedioxymethamphetamine activates nuclear factor-kappaB, increases intracellular calcium, and modulates gene transcription in rat heart cells. Cardiovasc Toxicol 5:301–310 (2005).PubMedCrossRefGoogle Scholar
  18. 18.
    Kaltschmidt, C., Kaltschmidt, B. & Baeuerle, P. A. Brain synapses contain inducible forms of the transcription factor NF-kappa B. Mech Dev 43:135–147 (1993).PubMedCrossRefGoogle Scholar
  19. 19.
    Kaltschmidt, C., Kaltschmidt, B., Neumann, H., Wekerle, H. & Baeuerle, P. A. Constitutive NF-kappa B activity in neurons. Mol Cell Biol 14, 3981-3992 (1994).Google Scholar
  20. 20.
    Galter, D., Mihm, S. & Droge, W. Distinct effects of glutathione disulphide on the nuclear transcription factor kappa B and the activator protein-1. Eur J Biochem 221:639–648 (1994).PubMedCrossRefGoogle Scholar
  21. 21.
    Kelly, K. A., Miller, D. B., Bowyer, J. F. & O’Callaghan, J. P. Chronic exposure to corticosterone enhances the neuroinflammatory and neurotoxic responses to methamphetamine. J Neurochem 122:995–1009 (2012).PubMedCrossRefGoogle Scholar
  22. 22.
    Kuhn, D. M., Francescutti-Verbeem, D. M. & Thomas, D. M. Dopamine quinones activate microglia and induce a neurotoxic gene expression profile: relationship to methamphetamine-induced nerve ending damage. Ann N Y Acad Sci 1074:31–41 (2006).PubMedCrossRefGoogle Scholar
  23. 23.
    Ladenheim, B. et al. Methamphetamine-induced neurotoxicity is attenuated in transgenic mice with a null mutation for interleukin-6. Mol Pharmacol 58:1247–1256 (2000).PubMedGoogle Scholar
  24. 24.
    Montiel-Duarte, C., Ansorena, E., Lopez-Zabalza, M. J., Cenarruzabeitia, E. & Iraburu, M. J. Role of reactive oxygen species, glutathione and NF-kappaB in apoptosis induced by 3,4-methylenedioxymethamphetamine (“Ecstasy”) on hepatic stellate cells. Biochem Pharmacol 67:1025–1033 (2004).PubMedCrossRefGoogle Scholar
  25. 25.
    Tiangco, D. A., Halcomb, S., Lattanzio, F. A., Jr. & Hargrave, B. Y. 3,4-Methylenedioxymethamphetamine alters left ventricular function and activates nuclear factor-kappa B (NF-kappaB) in a time and dose dependent manner. Int J Mol Sci 11:4843–4863 (2010).PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Kermanian, F. et al. The role of adenosine receptor agonist and antagonist on Hippocampal MDMA detrimental effects; a structural and behavioral study. Metab Brain Dis 27:459–469 (2012).PubMedCrossRefGoogle Scholar
  27. 27.
    Kermanian, F., Soleimani, M., Ebrahimzadeh, A., Haghir, H. & Mehdizadeh, M. Effects of adenosine A2a receptor agonist and antagonist on hippocampal nuclear factor-κB expression preceded by MDMA toxicity. Metab Brain Dis 28:45–52 (2013).PubMedCrossRefGoogle Scholar
  28. 28.
    Bexis, S. & Docherty, J. R. Effects of MDMA, MDA and MDEA on blood pressure, heart rate, locomotor activity and body temperature in the rat involve alpha-adrenoceptors. Br J Pharmacol 147:926–934 (2006).PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    McNamara, R., Maginn, M. & Harkin, A. Caffeine induces a profound and persistent tachycardia in response to MDMA (“Ecstasy”) administration. Eur J Pharmacol 555:194–198 (2007).PubMedCrossRefGoogle Scholar
  30. 30.
    Vandeputte, C. & Docherty, J. R. Vascular actions of 3,4-methylenedioxymethamphetamine in alpha (2A/D)-adrenoceptor knockout mice. Eur J Pharmacol 457:45–49 (2002).PubMedCrossRefGoogle Scholar
  31. 31.
    Schreck, R., Albermann, K. & Baeuerle, P. A. Nuclear factor kappa B: an oxidative stress-responsive transcription factor of eukaryotic cells (a review). Free Radic Res Commun 17:221–237 (1992).PubMedCrossRefGoogle Scholar
  32. 32.
    Arrigo, A. P. Gene expression and the thiol redox state. Free Radic Biol Med 27:936–944 (1999).PubMedCrossRefGoogle Scholar
  33. 33.
    Bouloumie, A., Schini-Kerth, V. B. & Busse, R. Vascular endothelial growth factor up-regulates nitric oxide synthase expression in endothelial cells. Cardiovasc Res 41:773–780 (1999).PubMedCrossRefGoogle Scholar
  34. 34.
    Bowie, A. G. & O’Neill, L. A. Vitamin C inhibits NF-kappa B activation by TNF via the activation of p38 mitogen-activated protein kinase. J Immunol 165:7180–7188 (2000).PubMedCrossRefGoogle Scholar
  35. 35.
    Colado, M. I. et al. A study of the neurotoxic effect of MDMA (‘ecstasy’) on 5-HT neurones in the brains of mothers and neonates following administration of the drug during pregnancy. Br J Pharmacol 121:827–833 (1997).PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Imam, S. Z. et al. Methamphetamine-induced dopaminergic neurotoxicity: role of peroxynitrite and neuroprotective role of antioxidants and peroxynitrite decomposition catalysts. Ann N Y Acad Sci 939:366–380 (2001).PubMedCrossRefGoogle Scholar
  37. 37.
    Shankaran, M., Yamamoto, B. K. & Gudelsky, G. A. Involvement of the serotonin transporter in the formation of hydroxyl radicals induced by 3,4-methylenedioxymethamphetamine. Eur J Pharmacol 385:103–110 (1999).PubMedCrossRefGoogle Scholar
  38. 38.
    Miranda, M. et al. Oxidative stress in rat retina and hippocampus after chronic MDMA (’ecstasy’) administration. Neurochem Res 32:1156–1162 (2007).PubMedCrossRefGoogle Scholar
  39. 39.
    Broening, H. W., Morford, L. L., Inman-Wood, S. L., Fukumura, M. & Vorhees, C. V. 3,4-methylenedioxymethamphetamine (ecstasy)-induced learning and memory impairments depend on the age of exposure during early development. J Neurosci 21:3228–3235 (2001).PubMedGoogle Scholar
  40. 40.
    Vorhees, C. V. et al. (+/−)3,4-Methylenedioxymethamphetamine (MDMA) dose-dependently impairs spatial learning in the morris water maze after exposure of rats to different five-day intervals from birth to postnatal day twenty. Dev Neurosci 31:107–120 (2009).PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Baumann, M. H., Wang, X. & Rothman, R. B. 3,4-Methylenedioxymethamphetamine (MDMA) neurotoxicity in rats: a reappraisal of past and present findings. Psychopharmacology (Berl) 189:407–424 (2007).CrossRefGoogle Scholar
  42. 42.
    Green, A. R., Mechan, A. O., Elliott, J. M., O’Shea, E. & Colado, M. I. The pharmacology and clinical pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”). Pharmacol Rev 55:463–508 (2003).PubMedCrossRefGoogle Scholar
  43. 43.
    Kramer, K., Azmitia, E. C. & Whitaker-Azmitia, P. M. In vitro release of [3H]5-hydroxytryptamine from fetal and maternal brain by drugs of abuse. Brain Res Dev Brain Res 78:142–146 (1994).PubMedCrossRefGoogle Scholar
  44. 44.
    Badon, L. A. et al. Changes in cardiovascular responsiveness and cardiotoxicity elicited during binge administration of Ecstasy. J Pharmacol Exp Ther 302:898–907 (2002).PubMedCrossRefGoogle Scholar
  45. 45.
    Garcia, G. E. et al. Adenosine A2A receptor activation and macrophage-mediated experimental glomerulonephritis. FASEB J 22:445–454 (2008).PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Pedata, F., Corsi, C., Melani, A., Bordoni, F. & Latini, S. Adenosine extracellular brain concentrations and role of A2A receptors in ischemia. Ann N Y Acad Sci 939:74–84 (2001).PubMedCrossRefGoogle Scholar
  47. 47.
    Ohta, A. & Sitkovsky, M. Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature 414:916–920 (2001).PubMedCrossRefGoogle Scholar
  48. 48.
    Sullivan, G. W., Fang, G., Linden, J. & Scheld, W. M. A2A adenosine receptor activation improves survival in mouse models of endotoxemia and sepsis. J Infect Dis 189:1897–1904 (2004).PubMedCrossRefGoogle Scholar
  49. 49.
    Boison, D. & Shen, H. Y. Adenosine Kinase is a new therapeutic targetto prevent ischemic neuronal death. Open Drug Dis J 2:108–118 (2010).Google Scholar
  50. 50.
    Latini, S., Pazzagli, M., Pepeu, G. & Pedata, F. A2 adenosine receptors: their presence and neuromodulatory role in the central nervous system. Gen Pharmacol 27:925–933 (1996).PubMedCrossRefGoogle Scholar
  51. 51.
    Barger, S. W. & Mattson, M. P. Induction of neuroprotective kappa B-dependent transcription by secreted forms of the Alzheimer’s beta-amyloid precursor. Brain Res Mol Brain Res 40:116–126 (1996).PubMedCrossRefGoogle Scholar
  52. 52.
    Guo, Q., Robinson, N. & Mattson, M. P. Secreted beta-amyloid precursor protein counteracts the proapoptotic action of mutant presenilin-1 by activation of NF-kappaB and stabilization of calcium homeostasis. J Biol Chem 273:12341–12351 (1998).PubMedCrossRefGoogle Scholar
  53. 53.
    Kaltschmidt, C., Kaltschmidt, B. & Baeuerle, P. A. Stimulation of ionotropic glutamate receptors activates transcription factor NF-kappa B in primary neurons. Proc Natl Acad Sci U S A 92:9618–9622 (1995).PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Lezoualc’h, F., Sagara, Y., Holsboer, F. & Behl, C. High constitutive NF-kappaB activity mediates resistance to oxidative stress in neuronal cells. J Neurosci 18:3224–3232 (1998).PubMedGoogle Scholar
  55. 55.
    Hatano, E. et al. NF-kappaB stimulates inducible nitric oxide synthase to protect mouse hepatocytes from TNF-alpha- and Fas-mediated apoptosis. Gastroenterology 120:1251–1262 (2001).PubMedCrossRefGoogle Scholar
  56. 56.
    Liu, H., Lo, C. R. & Czaja, M. J. NF-kappaB inhibition sensitizes hepatocytes to TNF-induced apoptosis through a sustained activation of JNK and c-Jun. Hepatology 35:772–778 (2002).PubMedCrossRefGoogle Scholar
  57. 57.
    Blondeau, N., Widmann, C., Lazdunski, M. & Heurteaux, C. Activation of the nuclear factor-kappaB is a key event in brain tolerance. J Neurosci 21:4668–4677 (2001).PubMedGoogle Scholar
  58. 58.
    Ravati, A., Ahlemeyer, B., Becker, A., Klumpp, S. & Krieglstein, J. Preconditioning-induced neuroprotection is mediated by reactive oxygen species and activation of the transcription factor nuclear factor-kappaB. J Neurochem 78:909–919 (2001).PubMedCrossRefGoogle Scholar
  59. 59.
    Hasko, G. & Pacher, P. A2A receptors in inflammation and injury: lessons learned from transgenic animals. J Leukoc Biol 83:447–455 (2008).PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Milne, G. R. & Palmer, T. M. Anti-inflammatory and immunosuppressive effects of the A2A adenosine receptor. Scientific World Journal 11:320–339 (2011).PubMedCrossRefGoogle Scholar
  61. 61.
    Arolfo, M. P., Yao, L., Gordon, A. S., Diamond, I. & Janak, P. H. Ethanol operant self-administration in rats is regulated by adenosine A2 receptors. Alcohol Clin Exp Res 28:1308–1316 (2004).PubMedCrossRefGoogle Scholar
  62. 62.
    Bachtell, R. K. & Self, D. W. Effects of adenosine A2A receptor stimulation on cocaine-seeking behavior in rats. Psychopharmacology (Berl) 206:469–478 (2009).CrossRefGoogle Scholar
  63. 63.
    Castane, A., Soria, G., Ledent, C., Maldonado, R. & Valverde, O. Attenuation of nicotine-induced rewarding effects in A2A knockout mice. Neuropharmacology 51:631–640 (2006).PubMedCrossRefGoogle Scholar
  64. 64.
    Sahraei, H., Motamedi, F., Khoshbaten, A. & Zarrindast, M.R. Adenosine A (2) receptors inhibit morphine self-administration in rats. Eur J Pharmacol 383:107–113 (1999).PubMedCrossRefGoogle Scholar
  65. 65.
    Zarrindast, M. R., Naghipour, B., Roushan-zamir, F. & Shafaghi, B. Effects of adenosine receptor agents on the expression of morphine withdrawal in mice. Eur J Pharmacol 369:17–22 (1999).PubMedCrossRefGoogle Scholar

Copyright information

© The Korean Society of Toxicogenomics and Toxicoproteomics and Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Fatemeh Kermanian
    • 1
  • Mehdi Mehdizadeh
    • 2
    • 3
  • Mansooreh Soleimani
    • 2
  • Ali Reza Ebrahimzadeh Bideskan
    • 1
  • Javad Hami
    • 1
    • 4
  • Hamed Kheradmand
    • 5
  • Hossein Haghir
    • 1
    • 6
  1. 1.Department of Anatomy and Cell Biology, School of MedicineMashhad University of Medical Sciences (MUMS)MashhadIran
  2. 2.Cellular & Molecular Research CenterTehran University of Medical Sciences (TUMS)TehranIran
  3. 3.Department of Anatomical SciencesTehran University of Medical Sciences (TUMS)TehranIran
  4. 4.Department of Anatomy, School of MedicineBirjand University of Medical SciencesBirjandIran
  5. 5.Hazrat Rasoul HospitalTehran University of Medical SciencesTehranIran
  6. 6.Medical Genetic Research Center (MGRC), School of MedicineMashhad University of Medical SciencesMashhadIran

Personalised recommendations