Molecular & Cellular Toxicology

, Volume 10, Issue 1, pp 29–39 | Cite as

Resveratrol relieves hydrogen peroxide-induced premature senescence associated with SIRT1 in human mesenchymal stem cells

  • Mi Ran Choi
  • Dal Mu Ri Han
  • Sun Hwa Kim
  • Takbum Ohn
  • Kyoung Hwa Jung
  • Young Gyu Chai
Original Paper


Cellular senescence of mesenchymal stem cells (MSCs) is often induced during in vitro expansion, by multiple experimental stimuli including oxidative stress. In this study, we investigated expression of senescence-associated proteins including SIRT1after inducing premature senescence of MSCs with hydrogen peroxide (H2O2). We also analyzed the effect of resveratrol (RSV) on premature senescence. We found that H2O2 triggered the recruitment of RCK (p54) to P-bodies in MSCs. Premature senescence of MSCs in response to H2O2 induced a decrease in SIRT1expression and activity (indirectly identified by measuring H3-K9ac). Cellular expression of p21 and phosphorylation of ERK1/2 and p38 kinases were increased in response to H2O2, whereas phosphorylation of pRb was decreased. In contrast, RSV pretreatment resulted in a decrease in the premature senescence of MSCs. In addition, RSV pretreatment before exposing cells to H2O2 not only alleviated changes in the levels of proteins that were sensitive to the H2O2 treatment (SIRT1, p21,ERK1/2 and p38) but also inhibited the decrease of SIRT1 induced by nicotinamide (NAM). Our results suggest that MSCs may exhibit an increased tolerance for H2O2-induced oxidative stress via the senescence-associated proteins that are regulated by RSV.


Hydrogen peroxide Mesenchymal stem cells Premature senescence Resveratrol SIRT1 Stress granule 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Choi, M. R. et al. Selection of optimal passage of bone marrow-derived mesenchymal stem cells for stem cell therapy in patients with amyotrophic lateral sclerosis. Neurosci Lett 472:94–98 (2010).PubMedCrossRefGoogle Scholar
  2. 2.
    Bruder, S. P., Jaiswal, N. & Haynesworth, S. E. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 64:278–294 (1997).PubMedCrossRefGoogle Scholar
  3. 3.
    Rombouts, W. J. & Ploemacher, R. E. Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture. Leukemia 17:160–170 (2003).PubMedCrossRefGoogle Scholar
  4. 4.
    Choi, M. R. et al. Genome-scale DNA methylation pattern profiling of human bone marrow mesenchymal stem cells in long-term culture. Exp Mol Med 44:503–512 (2012).PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Emara, M. M. et al. Hydrogen peroxide induces stress granule formation independent of eIF2alpha phosphorylation. Biochem Biophys Res Commun 423:763–769 (2012).PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Ohn, T. & Anderson, P. The role of posttranslational modifications in the assembly of stress granules. Wiley Interdiscip Rev RNA 1:486–493 (2010).PubMedCrossRefGoogle Scholar
  7. 7.
    Anderson, P. & Kedersha, N. RNA granules. J Cell Biol 172:803–808 (2006).PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Kamata, H. & Hirata, H. Redox regulation of cellular signalling. Cell Signal 11:1–14 (1999).PubMedCrossRefGoogle Scholar
  9. 9.
    Hong, E. H. et al. Ionizing radiation induces cellular senescence of articular chondrocytes via negative regulation of SIRT1 by p38 kinase. J Biol Chem 285:1283–1295 (2010).PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Brandl, A., Meyer, M., Bechmann, V., Nerlich, M. & Angele, P. Oxidative stress induces senescence in human mesenchymal stem cells. Exp Cell Res 317:1541–1547 (2011).PubMedCrossRefGoogle Scholar
  11. 11.
    Kim, J. S. et al. Proteomic and metabolomic analysis of H2O2-induced premature senescent human mesenchymal stem cells. Exp Gerontol 46:500–510 (2011).PubMedCrossRefGoogle Scholar
  12. 12.
    Lee, J. S. et al. Senescent growth arrest in mesenchymal stem cells is bypassed by Wip1-mediated downregulation of intrinsic stress signaling pathways. Stem Cells 27:1963–1975 (2009).PubMedCrossRefGoogle Scholar
  13. 13.
    Zhang, W. et al. Comparison of global DNA methylation profiles in replicative versus premature senescence. Life Sci 83:475–480 (2008).PubMedCrossRefGoogle Scholar
  14. 14.
    Chen, W., Rezaizadehnajafi, L. & Wink, M. Influence of resveratrol on oxidative stress resistance and life span in Caenorhabditis elegans. J Pharm Pharmacol 65:682–688 (2013).PubMedCrossRefGoogle Scholar
  15. 15.
    Pandey, K. B. & Rizvi, S. I. Resveratrol up-regulates the erythrocyte plasma membrane redox system and mitigates oxidation-induced alterations in erythrocytes during aging in humans. Rejuvenation Res 16:232–240 (2013).PubMedCrossRefGoogle Scholar
  16. 16.
    Quincozes-Santos, A. et al. Resveratrol Protects C6 Astrocyte Cell Line against Hydrogen Peroxide-Induced Oxidative Stress through Heme Oxygenase 1. PloS one 8:e64372 (2013).PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Brunet, A. et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303:2011–2015 (2004).PubMedCrossRefGoogle Scholar
  18. 18.
    Huang, J. et al. SIRT1 overexpression antagonizes cellular senescence with activated ERK/S6k1 signaling in human diploid fibroblasts. PloS one 3:e1710 (2008).PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Langley, E. et al. Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. EMBO J 21:2383–2396 (2002).PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Vaquero, A. et al. Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol Cell 16:93–105 (2004).PubMedCrossRefGoogle Scholar
  21. 21.
    Klimova, T. A. et al. Hyperoxia-induced premature senescence requires p53 and pRb, but not mitochondrial matrix ROS. FASEB J 23:783–794 (2009).PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Han, M. K. et al. SIRT1 regulates apoptosis and Nanog expression in mouse embryonic stem cells by controlling p53 subcellular localization. Cell Stem Cell 2:241–251 (2008).PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Ju, Z., Choudhury, A. R. & Rudolph, K. L. A dual role of p21 in stem cell aging. Ann N Y Acad Sci 1100:333–344 (2007).PubMedCrossRefGoogle Scholar
  24. 24.
    Anderson, P. & Kedersha, N. Stressful initiations. J Cell Sci 115:3227–3234 (2002).PubMedGoogle Scholar
  25. 25.
    Guarente, L. Diverse and dynamic functions of the Sir silencing complex. Nat Genet 23:281–285 (1999).PubMedCrossRefGoogle Scholar
  26. 26.
    Vaziri, H. et al. hSIR2 (SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107:149–159 (2001).PubMedCrossRefGoogle Scholar
  27. 27.
    Kao, C. L. et al. Resveratrol protects human endothelium from H(2)O(2)-induced oxidative stress and senescence via SirT1 activation. J Atheroscler Thromb 17: 970–979 (2010).PubMedCrossRefGoogle Scholar
  28. 28.
    Yuan, H. F. et al. SIRT1 is required for long-term growth of human mesenchymal stem cells. J Mol Med (Berl) 90:389–400 (2012).CrossRefGoogle Scholar
  29. 29.
    Chaudhary, N. & Pfluger, P. T. Metabolic benefits from Sirt1 and Sirt1 activators. Curr Opin Clin Nutr Metab Care 12:431–437 (2009).PubMedCrossRefGoogle Scholar
  30. 30.
    Penumathsa, S. V. & Maulik, N. Resveratrol: a promising agent in promoting cardioprotection against coronary heart disease. Can J Physiol Pharmacol 87:275–286 (2009).PubMedCrossRefGoogle Scholar
  31. 31.
    Baur, J. A. & Sinclair, D. A. Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5:493–506 (2006).PubMedCrossRefGoogle Scholar
  32. 32.
    Lin, H. Y. et al. Resveratrol causes COX-2- and p53-dependent apoptosis in head and neck squamous cell cancer cells. J Cell Biochem 104:2131–2142 (2008).PubMedCrossRefGoogle Scholar
  33. 33.
    Cheng, T. et al. Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science 287:1804–1808 (2000).PubMedCrossRefGoogle Scholar
  34. 34.
    Kippin, T. E., Martens, D. J. & van der Kooy, D. p21 loss compromises the relative quiescence of forebrain stem cell proliferation leading to exhaustion of their proliferation capacity. Genes Dev 19:756–767 (2005).PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Yu, J. M. et al. Age-related changes in mesenchymal stem cells derived from rhesus macaque bone marrow. Aging Cell 10:66–79 (2011).PubMedCrossRefGoogle Scholar
  36. 36.
    Herbig, U., Jobling, W. A., Chen, B. P., Chen, D. J. & Sedivy, J. M. Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21 (CIP1), but not p16 (INK4a). Mol Cell 14:501–513 (2004).PubMedCrossRefGoogle Scholar
  37. 37.
    Martindale, J. L. & Holbrook, N. J. Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol 192:1–15 (2002).PubMedCrossRefGoogle Scholar
  38. 38.
    Nebreda, A. R. & Porras, A. p38 MAP kinases: beyond the stress response. Trends Biochem Sci 25:257–260 (2000).PubMedCrossRefGoogle Scholar
  39. 39.
    Pearson, G. et al. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22:153–183 (2001).PubMedGoogle Scholar
  40. 40.
    Conde de la Rosa, L. et al. Superoxide anions and hydrogen peroxide induce hepatocyte death by different mechanisms: involvement of JNK and ERK MAP kinases. J Hepatol 44:918–929 (2006).PubMedCrossRefGoogle Scholar
  41. 41.
    Czaja, M. J., Liu, H. & Wang, Y. Oxidant-induced hepatocyte injury from menadione is regulated by ERK and AP-1 signaling. Hepatology 37:1405–1413 (2003).PubMedCrossRefGoogle Scholar
  42. 42.
    Guyton, K. Z. et al. Age-related changes in activation of mitogen-activated protein kinase cascades by oxidative stress. J Investig Dermatol Symp Proc 3:23–27 (1998).PubMedGoogle Scholar
  43. 43.
    Yu, J. et al. Involvement of oxidative stress and mitogen-activated protein kinase signaling pathways in heat stress-induced injury in the rat small intestine. Stress 16:99–113 (2013).PubMedCrossRefGoogle Scholar

Copyright information

© The Korean Society of Toxicogenomics and Toxicoproteomics and Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Mi Ran Choi
    • 1
  • Dal Mu Ri Han
    • 1
  • Sun Hwa Kim
    • 1
  • Takbum Ohn
    • 2
  • Kyoung Hwa Jung
    • 1
  • Young Gyu Chai
    • 1
    • 3
  1. 1.Department of Molecular and Life SciencesHanyang UniversityAnsanKorea
  2. 2.Department of Cellular & Molecular Medicine, College of MedicineChosun UniversityGwangjuKorea
  3. 3.Department of NanobiotechnologyHanyang UniversitySeoulKorea

Personalised recommendations