Molecular & Cellular Toxicology

, Volume 9, Issue 2, pp 103–111 | Cite as

Semantic networks for genome-wide CNV associated with AST and ALT in Korean cohorts

  • Hyo-Young Kim
  • Jun-Hyung Park
  • Heebal Kim
  • Byeong-Chul Kang
Original Paper


Copy number variation (CNV) is an emerging approach to study about human health and diseases. Liver-related biochemical tests (aspartate aminotransferase: AST, alanine aminotransferase: ALT) are useful for diagnosing a patient with liver injury. We analyzed a CNV-based GWAS of AST and ALT in 407 Korean. Affymetrix Human 6.0 Array was used to identify CNV, and CNV segmentation was performed using CNV analysis software. Univariate linear regression was used for the GWAS using R package. We identified 64 CNVs associated with AST or ALT, and screened 228 genes located within our CNVs. In this study, we focused on semantic networks about liver disease using knowledge integration software. This semantic networks about liver disease contained entities like gene, disease, pathway, chemical, drug, and contained relationships between two entities like gene-pathway, gene-disease, pathway-chemical, disease-pathway, chemical-drug. Application of semantic networks shown three clusters, including four diseases (hepatocellular carcinoma, liver neoplasm, liver cell adenoma, drug-induced liver injury), one pathway (hepatitis C pathway), and seven drugs (acetaminophen, chlormezanone, stavudine, enflurane, isoniazid, mebendazole, nitisinone).


Copy number variation Liver Modeling Network 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Thapa, B. & Walia, A. Liver function tests and their interpretation. Indian J Pediatr 74:663–671 (2007).PubMedCrossRefGoogle Scholar
  2. 2.
    Ruhl, C. E. & Everhart, J. E. Upper limits of normal for alanine aminotransferase activity in the United States population. Hepatology 55:447–454 (2012).PubMedCrossRefGoogle Scholar
  3. 3.
    Hsueh, C. J., Wang, J. H., Dai, L. & Liu, C. C. Development of an Electrochemical-Based Aspartate Aminotransferase Nanoparticle Ir-C Biosensor for Screening of Liver Diseases. Biosensors 2:234–244 (2012).CrossRefGoogle Scholar
  4. 4.
    Lee, B. Y., Cho, S., Shin, D. H. & Kim, H. Genomewide association study of copy number variations associated with pulmonary function measures in Korea Associated Resource (KARE) cohorts. Genomics 97: 101–105 (2011).PubMedCrossRefGoogle Scholar
  5. 5.
    McCarroll, S. A. & Altshuler, D. M. Copy-number variation and association studies of human disease. Nature Genetics 39:S37–S42 (2007).PubMedCrossRefGoogle Scholar
  6. 6.
    Kim, H. Y., Yu, J. & Kim, H. Analysis of copy number variation in 8,842 Korean individuals reveals 39 genes associated with hepatic biomarkers AST and ALT. BMB reports 43:547–553 (2010).PubMedCrossRefGoogle Scholar
  7. 7.
    Redon, R. et al. Global variation in copy number in the human genome. Nature 444:444–454 (2006).PubMedCrossRefGoogle Scholar
  8. 8.
    Zhang, Y. et al. Systematic analysis, comparison, and integration of disease based human genetic association data and mouse genetic phenotypic information. BMC Medical Genomics 3:1 (2010).PubMedCrossRefGoogle Scholar
  9. 9.
    Houlston, R. S. et al. Meta-analysis of genome-wide association data identifies four new susceptibility loci for colorectal cancer. Nature Genetics 40:1426–1435 (2008).PubMedCrossRefGoogle Scholar
  10. 10.
    Kim, H. Y. et al. Semantic data integration for toxicogenomic laboratory experiment management systems. Toxicology and Environmental Health Sciences 3:135–143 (2011).CrossRefGoogle Scholar
  11. 11.
    Shin, G. H. et al. mRNA-centric semantic modeling for finding molecular signature of trace chemical in human blood. Mol Cell Toxicol 8:35–41 (2012).CrossRefGoogle Scholar
  12. 12.
    Forbes, S. A. et al. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Research 39:D945–D950 (2011).PubMedCrossRefGoogle Scholar
  13. 13.
    Kampstra, P. Beanplot: A boxplot alternative for visual comparison of distributions (2008).Google Scholar
  14. 14.
    Davis, A. P. et al. Comparative Toxicogenomics Database: a knowledgebase and discovery tool for chemical gene disease networks. Nucleic Acids Research 37: D786–D792 (2009).PubMedCrossRefGoogle Scholar
  15. 15.
    Wishart, D. S. et al. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Research 34:D668–D672 (2006).PubMedCrossRefGoogle Scholar
  16. 16.
    Overbeek, R. et al. The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Research 33:5691–5702 (2005).PubMedCrossRefGoogle Scholar
  17. 17.
    Higgins, M. E., Claremont, M., Major, J. E., Sander, C. & Lash, A. E. CancerGenes: a gene selection resource for cancer genome projects. Nucleic Acids Research 35: D721–D726 (2007).PubMedCrossRefGoogle Scholar
  18. 18.
    Taniguchi, K. et al. I. Mutational spectrum of betacatenin, AXIN1, and AXIN2 in hepatocellular carcinomas and hepatoblastomas. Oncogene 21:4863 (2002).PubMedCrossRefGoogle Scholar
  19. 19.
    Liu, K., Hogan, W. R. & Crowley, R. S. Natural Language Processing methods and systems for biomedical ontology learning. Journal of Biomedical Informatics 44:163–179 (2011).PubMedCrossRefGoogle Scholar
  20. 20.
    Zucman-Rossi, J. Benign Liver Tumors. Molecular Pathology of Liver Diseases 769–775 (2011).CrossRefGoogle Scholar
  21. 21.
    Davern, T. J. Drug-induced liver disease. Clinics in Liver Disease 16:231 (2012).PubMedCrossRefGoogle Scholar
  22. 22.
    Björnsson, E. S. & Chalasani, N. Drug-Induced Liver Injury. Practical Gastroenterology and Hepatology: Liver and Biliary Disease 235–242 (2010).Google Scholar
  23. 23.
    Farazi, P. A. & DePinho, R. A. Hepatocellular carcinoma pathogenesis: from genes to environment. Nature Reviews Cancer 6:674–687 (2006).PubMedCrossRefGoogle Scholar
  24. 24.
    Warrell, D. & Anderson, S. eds. Expedition medicine. London: Profile Books, 1998.Google Scholar
  25. 25.
    Steinkühler, C. et al. Product inhibition of the hepatitis C virus NS3 protease. Biochemistry 37:8899–8905 (1998).PubMedCrossRefGoogle Scholar
  26. 26.
    Lee, W. M. Drug-induced hepatotoxicity. New England Journal of Medicine 349:474–485 (2003).PubMedCrossRefGoogle Scholar
  27. 27.
    Davidson, D. & Eastham, W. Acute liver necrosis following overdose of paracetamol. British Medical Journal 2:497–499 (1966).PubMedCrossRefGoogle Scholar
  28. 28.
    Kullai Reddy Ulavapalli, J., Pyreddy, U. R. M. V. R. & Bobbarala, V. Indian Journal of Novel Drug Delivery. Indian Journal of Novel Drug delivery 3:134–142 (2011).Google Scholar
  29. 29.
    Miller, M. J., Krupp, I. M., Little, M. D. & Santos, C. Mebendazole. JAMA: The Journal of the American Medical Association 230:1412–1414 (1974).CrossRefGoogle Scholar
  30. 30.
    Have, I. Previous version-Roundworm. Hospitals 121: 0357.Google Scholar
  31. 31.
    De Clercq, D. et al. Failure of mebendazole in treatment of human hookworm infections in the southern region of Mali. American Journal of Tropical Medicine and Hygiene 57:25–30 (1997).PubMedGoogle Scholar
  32. 32.
    Yim, S. H. et al. Copy number variations in East-Asian population and their evolutionary and functional implications. Human Molecular Genetics 19:1001–1008 (2010).PubMedCrossRefGoogle Scholar
  33. 33.
    Kim, H. Y., Byun, M. J. & Kim, H. A replication study of genome-wide CNV association for hepatic biomarkers identifies nine genes associated with liver function. BMB reports 44: 578–583 (2011).PubMedCrossRefGoogle Scholar
  34. 34.
    Rasmussen, H. Cell communication, calcium ion, and cyclic adenosine monophosphate. Science 170:404–412 (1970).PubMedCrossRefGoogle Scholar
  35. 35.
    Williamson, J. R., Cooper, R. H. & Hoek, J. B. Role of calcium in the hormonal regulation of liver metabolism. Biochim Biophys Acta 639:243 (1981).PubMedCrossRefGoogle Scholar
  36. 36.
    山口 正義 & 山本 丈夫. Purification of calcium binding substance from soluble fraction of normal rat liver. Chem Pharm Bull 26:1915–1918 (1978).CrossRefGoogle Scholar
  37. 37.
    Mori, S. & Yamaguchi, M. Hepatic calcium-binding protein regucalcin decreases Ca2+/calmodulin-dependent protein kinase activity in rat liver cytosol. Chem Pharm Bull 38:2216 (1990).PubMedCrossRefGoogle Scholar
  38. 38.
    Leese, T., Farges, O. & Bismuth, H. Liver cell adenomas. A 12-year surgical experience from a specialist hepato-biliary unit. Annals of Surgery 208:558 (1988).PubMedCrossRefGoogle Scholar
  39. 39.
    Edmondson, H. A., Henderson, B. & Benton, B. Livercell adenomas associated with use of oral contraceptives. New England Journal of Medicine 294:470–472 (1976).PubMedCrossRefGoogle Scholar
  40. 40.
    Beasley, R. P., Lin, C. C., Hwang, L. Y. & Chien, C. S. Hepatocellular carcinoma and hepatitis B virus: a prospective study of 22 707 men in Taiwan. The Lancet 318:1129–1133 (1981).CrossRefGoogle Scholar
  41. 41.
    Bressac, B., Kew, M., Wands, J. & Ozturk, M. Selective G to T mutations of p 53 gene in hepatocellular carcinoma from southern Africa. Nature 350:429–431 (1991).PubMedCrossRefGoogle Scholar
  42. 42.
    Sommadossi, J. P. Comparison of Metabolism and in vitro antiviral activity of stavudine versus other 2′, 3′-Dideoxynucleoside Analogues. J Infect Dis 171:S88 (1995).PubMedCrossRefGoogle Scholar
  43. 43.
    Santra, S. & Baumann, U. Experience of nitisinone for the pharmacological treatment of hereditary tyrosinaemia type 1 informahealthcare (2008).Google Scholar
  44. 44.
    Lambert, C. HelixTree® Genetics Analysis Software. Golden Helix. Inc. http//wwwgoldenhelixcom (2005).Google Scholar
  45. 45.
    Karolchik, D. et al. The UCSC genome browser database. Nucleic Acids Research 31:51–54 (2003).PubMedCrossRefGoogle Scholar
  46. 46.
    Dennis, Jr, G. et al. DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4:P3 (2003).PubMedCrossRefGoogle Scholar

Copyright information

© The Korean Society of Toxicogenomics and Toxicoproteomics and Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Hyo-Young Kim
    • 1
    • 2
  • Jun-Hyung Park
    • 2
  • Heebal Kim
    • 1
  • Byeong-Chul Kang
    • 2
  1. 1.Department of Agricultural Biotechnology and Research Institute for Agriculture and Life ScienceSeoul National UniversitySeoulKorea
  2. 2.Insilicogen IncGyeonggi-doKorea

Personalised recommendations