Skip to main content
Log in

Gene expression profiles regulated by Hspa1b in MPTP-induced dopaminergic neurotoxicity using knockout mice

  • Original Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Heat shock proteins 70 (Hsp70), a chaperone that is up-regulated in stress responses and that refolds proteins, might be involved in the pathogenesis of Parkinson disease (PD). This study examined the gene expression profiling regulated by the Hsp70 gene using the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated PD model of mice. The differences in gene expression after a MPTP treatment in C57BL/6 normal mice and Hspa1b (Hsp70-1) knockout (KO) mice was compared using a 24K cDNA microarray. Microarray analysis showed that 246 genes were expressed differentially by the MPTP treatment in normal mice (147 up-regulated and 279 down-regulated). The MPTP-treated KO mice resulted in the differential expression of 26 genes (12 up-regulated and 13 down-regulated) compared to the MPTP-treated normal mice group. The PANTHER database was used to evaluate the microarray data. A total of 38 signaling pathways involved in 426 differentially expressed genes as a result of the MPTP treatment in normal mice were significant. Of these 38 pathways, the pathways related to 25 genes changed by a Hspa1b deficiency were 5-Hydroxytryptamine biosynthesis, adrenaline and noradrenaline biosynthesis, and Parkinson disease. These results demonstrated various genes regulated by Hspa1b in a MPTP-induced PD model. In conclusion, we suggest that this study may be partly helpful to identify action mechanism in the development of a novel drug targeted to Hspa1b gene in the treatment of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Morimoto, R. I. & Santoro, M. G. Stress-inducible responses and heat shock proteins: new pharmacologic targets for cytoprotection. Nat Biotechnol 16:833–838 (1998).

    Article  PubMed  CAS  Google Scholar 

  2. Frydman, J. Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu Rev Biochem 70:603–647 (2001).

    Article  PubMed  CAS  Google Scholar 

  3. Wegele, H., Muller, L. & Buchner, J. Hsp70 and Hsp 90-a relay team for protein folding. Rev Physiol Biochem Pharmacol 151:1–44 (2004).

    Article  PubMed  CAS  Google Scholar 

  4. Klucken, J. et al. Hsp70 Reduces alpha-synuclein aggregation and toxicity. J Biol Chem 279:25497–25502 (2004).

    Article  PubMed  CAS  Google Scholar 

  5. McLean, P. J., Klucken, J., Shin, Y. & Hyman, B. T. Geldanamycin induces Hsp70 and prevents alphasynuclein aggregation and toxicity in vitro. Biochem Biophys Res Commun 321:665–669 (2004).

    Article  PubMed  CAS  Google Scholar 

  6. Auluck, P. K. et al. Chaperone suppression of alphasynuclein toxicity in a Drosophila model for Parkinson’s disease. Science 295:865–868 (2002).

    Article  PubMed  CAS  Google Scholar 

  7. Dong, Z., Wolfer, D. P., Lipp, H. P. & Bueler, H. Hsp70 gene transfer by adeno-associated virus inhibits MPTP-induced nigrostriatal degeneration in the mouse model of Parkinson disease. Mol Ther 11:80–88 (2005).

    Article  PubMed  CAS  Google Scholar 

  8. Quigney, D. J., Gorman, A. M. & Samali, A. Heat shock protects PC12 cells against MPP+ toxicity. Brain Res 993:133–139 (2003).

    Article  PubMed  CAS  Google Scholar 

  9. Gasser, T. Overview of the genetics of parkinsonism. Adv Neurol 91:143–152 (2003).

    PubMed  CAS  Google Scholar 

  10. Luo, G. R., Chen, S. & Le, W. D. Are heat shock proteins therapeutic target for Parkinson’s disease? Int J Biol Sci 3:20–26 (2007).

    Article  CAS  Google Scholar 

  11. Cuervo, A. M. et al. Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science 305:1292–1295 (2004).

    Article  PubMed  CAS  Google Scholar 

  12. Park, H. K., Cho, A. R., Lee, S. C. & Ban, J. Y. MPTPinduced model of Parkinson’s disease in heat shock protein 70.1 knockout mice. Mol Med Report 5:1465–1468 (2012).

    PubMed  CAS  Google Scholar 

  13. Warrick, J. M. et al. Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nat Genet 23:425–428 (1999).

    Article  PubMed  CAS  Google Scholar 

  14. Shen, H. Y. et al. Geldanamycin induces heat shock protein 70 and protects against MPTP-induced dopaminergic neurotoxicity in mice. J Biol Chem 280:39962–39969 (2005).

    Article  PubMed  CAS  Google Scholar 

  15. McLean, P. J. et al. TorsinA and heat shock proteins act as molecular chaperones: suppression of alphasynuclein aggregation. J Neurochem 83:846–854 (2002).

    Article  PubMed  CAS  Google Scholar 

  16. Wu, Y. R. et al. Analysis of heat-shock protein 70 gene polymorphisms and the risk of Parkinson’s disease. Hum Genet 114:236–241 (2004).

    Article  PubMed  CAS  Google Scholar 

  17. Kühn, K. et al. The mouse MPTP model: gene expression changes in dopaminergic neurons. Eur J Neurosci 17:1–12 (2003).

    Article  PubMed  Google Scholar 

  18. Bloem, B. R. et al. The MPTP model: versatile contributions to the treatment of idiopathic Parkinson’s disease. J Neurol Sci 97:273–293 (1990).

    Article  PubMed  CAS  Google Scholar 

  19. Przedborski, S., Tieu, K., Perier, C. & Vila, M. MPTP as a mitochondrial neurotoxic model of Parkinson’s disease. J Bioenerg Biomembr 36:375–379 (2004).

    Article  PubMed  CAS  Google Scholar 

  20. Ludecke, B. et al. Recessively inherited L-DOPA-responsive parkinsonism in infancy caused by a point mutation (L205P) in the tyrosine hydroxylase gene. Hum Mol Genet 5:1023–1028 (1996).

    Article  PubMed  CAS  Google Scholar 

  21. Ohnuki, T., Nakamura, A., Okuyama, S. & Nakamura, S. Gene expression profiling in progressively MPTP-lesioned macaques reveals molecular pathways associated with sporadic Parkinson’s disease. Brain Res 1346:26–42 (2010).

    Article  PubMed  CAS  Google Scholar 

  22. Brochier, C. et al. Quantitative gene expression profiling of mouse brain regions reveals differential transcripts conserved in human and affected in disease models. Physiol Genomics 33:170–179 (2008).

    Article  PubMed  CAS  Google Scholar 

  23. Kuhn, K. et al. The mouse MPTP model: gene expression changes in dopaminergic neurons. Eur J Neurosci 17:1–12 (2003).

    Article  PubMed  Google Scholar 

  24. Ciesielska, A. et al. Influence of age and gender on cytokine expression in a murine model of Parkinson’s disease. Neuroimmunomodulation 14:255–265 (2007).

    Article  PubMed  CAS  Google Scholar 

  25. Kato, T. Molecular genetics of bipolar disorder and depression. Psychiatry Clin Neurosci 61:3–19 (2007).

    Article  PubMed  CAS  Google Scholar 

  26. Scatton, B. et al. Reduction of cortical dopamine, noradrenaline, serotonin and their metabolites in Parkinson’s disease. Brain Res 275:321–328 (1983).

    Article  PubMed  CAS  Google Scholar 

  27. Murai, T. et al. In vivo evidence for differential association of striatal dopamine and midbrain serotonin systems with neuropsychiatric symptoms in Parkinson’s disease. J Neuropsychiatry Clin Neurosci 13:222–228 (2001).

    Article  PubMed  CAS  Google Scholar 

  28. Kish, S. J. et al. Preferential loss of serotonin markers in caudate versus putamen in Parkinson’s disease. Brain 131:120–131 (2008).

    PubMed  Google Scholar 

  29. Sawada, M. et al. Tryptophan hydroxylase activity in the brains of controls and parkinsonian patients. J Neural Transm 62:107–115 (1985).

    Article  PubMed  CAS  Google Scholar 

  30. Kovacs, G. G. et al. Nucleus-specific alteration of raphe neurons in human neurodegenerative disorders. Neuroreport 14:73–76 (2003).

    Article  PubMed  CAS  Google Scholar 

  31. Thibaut, F., Vaugeois, J. M. & Petit, M. The dopamine transporter: characterization and physiopathologic implications. Encephale 21:445–451 (1995).

    PubMed  CAS  Google Scholar 

  32. Ban, J. Y. et al. Microarray analysis of gene expression profiles in response to treatment with melatonin in lipopolysaccharide activated RAW 264.7 cells. Korean J Physiol Pharmacol 15:23–29 (2011).

    Article  PubMed  CAS  Google Scholar 

  33. Kim, H. J. et al. Characterization of gene expression regulated by Panax ginseng in SH-SY5Y cells. Mol Cell Toxicol 6:219–227 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bum Shik Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ban, J.Y., Youn, H.C., Park, HK. et al. Gene expression profiles regulated by Hspa1b in MPTP-induced dopaminergic neurotoxicity using knockout mice. Mol. Cell. Toxicol. 8, 281–287 (2012). https://doi.org/10.1007/s13273-012-0034-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-012-0034-4

Keywords

Navigation