Skip to main content
Log in

Cross-experimental analysis of microarray gene expression datasets for in silico risk assessment of TiO2 nano-particles

  • Original Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

As the production and usage of nanomaterials increase, there are growing concerns on the unidentified detrimental effect of nanoparticles on human health and environmental safety. Systematic assessments of the risks associated with exposure to nanoparticles are needed. DNA microarrays have emerged as a powerful tool for toxicology research. Microarraybased toxicogenomics research provides valuable information for understanding underling mechanisms of toxicological behavior of non-classic contaminants, including ultrafine nanoparticles. In this work, we investigated the effect of nano-titanium oxide exposure on human cells by analyzing the change in transcription levels of cellular DNA. Cross-experimental analysis of heterogeneous gene expression datasets was performed using the RankProd algorithm. Multiple gene expression omnibus series obtained from various experimental conditions were combined and used for risk assessment. Several commonly regulated genes were identified as being unaffected by the laboratory specific conditions. Pathway analysis revealed the genes as being associated with six major pathways: arachidonic acid metabolism, purine metabolism, pentose phosphate pathway, mitogen-activated protein kinase signaling pathway, synthesis and degradation of ketone bodies, and methionine metabolism. The identified differently expressed genes provide a robust set of markers for exposure analysis and risk assessment of titanium oxide nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dowling, A. et al. Nanoscience and nanotechnologies: opportunities and uncertainties. Royal Soc Royal Acad Engin (2004).

  2. Yang, F. M. et al. Effect of nano-packing on preservation quality of fresh strawberry (Fragaria ananassa Duch. cv Fengxiang) during storage at 4 degrees C. J Food Sci 75:C236–C240 (2010).

    Article  PubMed  CAS  Google Scholar 

  3. Titball, R. W. et al. Biosafety and selectable markers. Ann New York Acad Sci 1105:405–417 (2007).

    Article  Google Scholar 

  4. Rahman, Q. et al. Evidence that ultrafine titanium dioxide induces micronuclei and apoptosis in Syrian hamster embryo fibroblasts. Environ Health Perspect 110: 797–800 (2002).

    Article  PubMed  CAS  Google Scholar 

  5. Wang, J. J., Sanderson, B. J. & Wang, H. Cyto- and genotoxicity of ultrafine TiO2 particles in cultured human lymphoblastoid cells. Mut Res/Genet Toxicol Environ Mutagen 628:99–106 (2007).

    Article  CAS  Google Scholar 

  6. Long, T. C. et al. Nanosize titanium dioxide stimulates reactive oxygen species in brain microglia and damages neurons in vitro. Enviro Health Perspect 115: 1631–1637 (2007).

    Article  CAS  Google Scholar 

  7. Gurr, J. R. et al. Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213:66–73 (2005).

    Article  PubMed  CAS  Google Scholar 

  8. Lee, K. P., Trochimowicz, H. J. & Reinhardt, C. F. Pulmonary response of rats exposed to titanium dio-xide (TiO2) by inhalation for two years. Toxicol Appl Pharmacol 79:179–192 (1985).

    Article  PubMed  CAS  Google Scholar 

  9. Park, H. O. et al. Comparison of cellular effects of titanium dioxide nanoparticles with different photocatalytic potential in human keratinocyte, HaCaT cells. Mol Cell Toxicol 7:67–75 (2011)

    Article  CAS  Google Scholar 

  10. Kim, J. S. et al. Array2KEGG: Web-based tool of KEGG pathway analysis for gene expression profile. BioChip J 4:134–140 (2010).

    Article  CAS  Google Scholar 

  11. Barrett, T. et al. NCBI GEO: mining tens of millions of expression profiles-database and tools update. Nucl Acids Res 35:D760–D765 (2007).

    Article  PubMed  CAS  Google Scholar 

  12. Edgar, R., Domrachev, M. & Lash, A. E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucl Acids Res 30:207–210 (2002).

    Article  PubMed  CAS  Google Scholar 

  13. Craigon, D. J. et al. NASCArrays: a repository for microarray data generated by NASC’s transcriptomics service. Nucl Acids Res 32:D575–D577 (2004).

    Article  PubMed  CAS  Google Scholar 

  14. Brazma, A. et al. ArrayExpress-a public repository for microarray gene expression data at the EBI. Nucl Acids Res 31:68–71 (2003).

    Article  PubMed  CAS  Google Scholar 

  15. Ikeo, K., Ishi-i, J., Tamura, T., Gojobori, T. & Tateno, Y. CIBEX: Center for Information Biology gene Expression database. Comptes Rendus Biologies 326: 1079–1082 (2003).

    Article  PubMed  CAS  Google Scholar 

  16. Jung, K. H. et al. Decreased expression of TFF2 and gastric carcinogenesis. Mol Cell Toxicol 6:261–269 (2010).

    Article  CAS  Google Scholar 

  17. Hong, F. et al. RankProd: a bioconductor package for detecting differentially expressed genes in meta-analysis. Bioinformatics 22:2825–2827 (2006).

    Article  PubMed  CAS  Google Scholar 

  18. Breitling, R. & Herzyk, P. Biological master games: using biologists’ reasoning to guide algorithm development for integrated functional genomics. OMICS 9: 225–232 (2005).

    Article  PubMed  CAS  Google Scholar 

  19. Pan, Z. et al. Adverse effects of titanium dioxide nanoparticles on human dermal fibroblasts and how to protect cells. Small 5:511–520 (2009).

    Article  PubMed  CAS  Google Scholar 

  20. Xia, T. et al. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6:1794–1807 (2006).

    Article  PubMed  CAS  Google Scholar 

  21. Yim, W. C. et al. Identification of novel 17β-estradiol (E2) target genes using cross-experiment gene expression datasets. Toxicol Env Health Sci 2:25–38 (2010).

    Article  Google Scholar 

  22. Yim, W. C. et al. Cross experimental analysis of microarray gene expression data from volatile organic compounds treated targets. Mol Cell Toxicol 7:233–241 (2011).

    Article  CAS  Google Scholar 

  23. Lempicki, R. A. et al. The DAVID gene functional classification tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol 8:R183 (2007).

    Article  PubMed  Google Scholar 

  24. Ashburner, M. et al. Gene ontology: tool for the unification of biology. Nat Genet 25:25–29 (2000).

    Article  PubMed  CAS  Google Scholar 

  25. Bindea, G. et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25:1091–1093 (2009).

    Article  PubMed  CAS  Google Scholar 

  26. Eyre, T. A. et al. The HUGO Gene nomenclature database, 2006 updates. Nucl Acids Res 34:D319–D321 (2006).

    Article  PubMed  CAS  Google Scholar 

  27. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504 (2003).

    Article  PubMed  CAS  Google Scholar 

  28. Galon, J. et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25:1091–1093 (2009).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Won Cheol Yim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yim, W.C., Lee, BM. & Kwon, Y. Cross-experimental analysis of microarray gene expression datasets for in silico risk assessment of TiO2 nano-particles. Mol. Cell. Toxicol. 8, 229–239 (2012). https://doi.org/10.1007/s13273-012-0028-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-012-0028-2

Keywords

Navigation