Skip to main content
Log in

Cytotoxicity of core-shell polystyrene magnetic beads and related mechanisms

  • Original Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Magnetic particles (MPs) of nano/submicron-scale have been widely used in biomedical applications and laboratory research. It is vital to evaluate the performance and influence of MPs incubated with cells. This study aimed to test the cytotoxicity of coreshell polystyrene magnetic beads and explore the related mechanisms for further use in cartilage regeneration. Core-shell polystyrene magnetic beads at 0–2 ng/ cell were incubated with human chondrocyte cell line C28/I2 for five days. Cell viability, proliferation, morphology and expression of key genes that regulate the cell function were evaluated. The results were compromised in a dose- and time-dependent way. There were visible cytotoxic effects at a high loaded dose of 2 ng/ cell, such as cell uptake, low viability, slow proliferation rate and poor cell morphology. Gene expression was a balanced consequence between toxic factors and cell repair performances. Core-shell polystyrene magnetic beads showed acceptable biocompatibility except at higher doses (over 2 ng/cell) where low cytotoxicity was apparent. These interferences were probably owing to ROS (reactive oxygen species) generation, cytoskeleton architecture rearrangement, iron imbalance, modification detachment, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Neuberger, T., Schopf, B., Hofmann, H., Hofmann, M. & von Rechenberg, B. Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system. J Magn Magn Mater 293:483–496 (2005).

    Article  CAS  Google Scholar 

  2. Neenu, S., Gareth, J. S. J., Romisa, A. & Shareen, H. D. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Reviews 1:53–58 (2010).

    Google Scholar 

  3. Berry, C. C. Progress in functionalization of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 42:1–9 (2009).

    Article  Google Scholar 

  4. Hu, S. L. et al. In vitro labeling of human umbilical cord mesenchymal stem cells with superparamagnetic iron oxide nanoparticles. J Cell Biochem 108:529–535 (2009).

    Article  PubMed  CAS  Google Scholar 

  5. Jin, H. Z. & Kang, K. A. Application of novel metal nanoparticles as optical/thermal agents in optical mammography and hyperthermic treatment for breast cancer. Oxygen Transport to Tissue Xxviii 599:45–52 (2007).

    Article  CAS  Google Scholar 

  6. Yuge, L. et al. Physical stress by magnetic force accelerates differentiation of human osteoblasts. Biochem Biophys Res Commun 311:32–38 (2003).

    Article  PubMed  CAS  Google Scholar 

  7. Edwards, B. S., Oprea, T., Prossnitz, E. R. & Sklar, L. A. Flow cytometry for high-throughput, high-content screening. Curr Opin Chem Biol 8:392–398 (2004).

    Article  PubMed  CAS  Google Scholar 

  8. Ino, K. et al. Cell culture arrays using magnetic forcebased cell patterning for dynamic single cell analysis. Lab on a Chip 8:134–142 (2008).

    Article  PubMed  CAS  Google Scholar 

  9. Liang, Y. Y., Zhang, L. M., Jiang, W. & Li, W. Embedding magnetic nanoparticles into polysaccharide-based hydrogels for magnetically assisted bioseparation. Chemphyschem 8:2367–2372 (2007).

    Article  PubMed  CAS  Google Scholar 

  10. Nan, A. et al. Novel magnetic core-shell Fe3O4 polypyrrole nanoparticles functionalized by peptides or albumin. Arkivoc: 185–198 (2010).

  11. Bulte, J. W. M. et al. Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol 19:1141–1147 (2001).

    Article  PubMed  CAS  Google Scholar 

  12. Paulino, A. T. et al. One-pot synthesis of a chitosanbased hydrogel as a potential device for magnetic biomaterial. J Magn Magn Mater 321:2636–2642 (2009).

    Article  CAS  Google Scholar 

  13. Fischer, D., Li, Y. X., Ahlemeyer, B., Krieglstein, J. & Kissel, T. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials 24:1121–1131 (2003).

    Article  PubMed  CAS  Google Scholar 

  14. Meenach, S. A., Anderson, A. A., Suthar, M., Anderson, K. W. & Hilt, J. Z. Biocompatibility analysis of magnetic hydrogel nanocomposites based on poly (N-isopropylacrylamide) and iron oxide. J Biomed Mater Res A 91A:903–909 (2009).

    Article  CAS  Google Scholar 

  15. Berry, C. C., Wells, S., Charles, S. & Curtis, A. S. G. Dextran and albumin derivatised iron oxide nanoparticles: influence on fibroblasts in vitro. Biomaterials 24:4551–4557 (2003).

    Article  PubMed  CAS  Google Scholar 

  16. Mahmoudi, M., Simchi, A., Milani, A. S. & Stroeve, P. Cell toxicity of superparamagnetic iron oxide nanoparticles. J Colloid Interface Sci 336:510–518 (2009).

    Article  PubMed  CAS  Google Scholar 

  17. Mailander, V. & Landfester, K. Interaction of nano-particles with cells. Biomacromolecules 10:2379–2400 (2009).

    Article  PubMed  Google Scholar 

  18. Bhattacharjee, S. et al. Role of surface charge and oxidative stress in cytotoxicity of organic monolayer-coated silicon nanoparticles towards macrophage NR8383 cells. Part Fibre Toxicol 7:25(1)–25(12) (2010).

    Article  Google Scholar 

  19. Sohaebuddin, S. K., Thevenot, P. T., Baker, D., Eaton, J. W. & Tang, L. P. Nanomaterial cytotoxicity is composition, size, and cell type dependent. Part Fibre Toxicol 7:22–38 (2010).

    Article  PubMed  Google Scholar 

  20. Ankamwar, B. et al. Biocompatibility of Fe3O4 nanoparticles evaluated by in vitro cytotoxicity assays using normal, glia and breast cancer cells. Nanotechnology 21:75102–75110 (2010).

    Article  PubMed  CAS  Google Scholar 

  21. Soenen, S. J. H. et al. The role of nanoparticle concentration-dependent induction of cellular stress in the internalization of non-toxic cationic magnetoliposomes. Biomaterials 30:6803–6813 (2009).

    Article  PubMed  CAS  Google Scholar 

  22. Mahmoudi, M. et al. Cytotoxicity and cell cycle effects of bare and poly (vinyl alcohol)-coated iron oxide nanoparticles in mouse fibroblasts. Adv Eng Mater 11: B243–B250 (2009).

    Article  Google Scholar 

  23. Zhang, Y., Kohler, N. & Zhang, M. Q. Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials 23:1553–1561 (2002).

    Article  PubMed  CAS  Google Scholar 

  24. Karlsson, H. L., Cronholm, P., Gustafsson, J. & Moller, L. Copper oxide nanoparticles are highly toxic: A comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21:1726–1732 (2008).

    Article  PubMed  CAS  Google Scholar 

  25. Hafelli, U. O. et al. Cell uptake and in vitro toxicity of magnetic nanoparticles suitable for drug delivery. Mol Pharmaceut 6:1417–1428 (2009).

    Article  Google Scholar 

  26. Jeng, H. A. & Swanson, J. Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Heal A 41:2699–2711 (2006).

    CAS  Google Scholar 

  27. Lin, Z., Willers, C., Xu, J. A. & Zheng, M. H. The chondrocyte: Biology and clinical application. Tissue Eng. 12:1971–1984 (2006).

  28. Hyun, J. H., Chen, J., Setton, L. A. & Chilkoti, A. Patterning cells in highly deformable micro structures: Effect of plastic deformation of substrate on cellular phenotype and gene expression. Biomaterials 27:1444–1451 (2006).

    Article  PubMed  CAS  Google Scholar 

  29. McCarthy, J. R. & Weissleder, R. Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug Deliver Rev 60:1241–1251 (2008).

    Article  CAS  Google Scholar 

  30. von zur Muhlen, C. et al. Superparamagnetic iron oxide binding and uptake as imaged by magnetic resonance is mediated by the integrin receptor Mac-1 (CD11b /CD18): Implications on imaging of atherosclerotic plaques. Atherosclerosis 193:102–111 (2007).

    Article  Google Scholar 

  31. Thomson, A. M., Rogers, J. T. & Leedman, P. J. Ironregulatory proteins, iron-responsive elements and ferritin mRNA translation. Int J Biochem Cell Biol 31: 1139–1152 (1999).

    Article  PubMed  CAS  Google Scholar 

  32. van der Goot, F. G. & Gruenberg, J. Intra-endosomal membrane traffic. Trends Cell Biol 16:514–521 (2006).

    Article  PubMed  Google Scholar 

  33. Upadhyay, D., Panduri, V., Ghio, A. & Kamp, D. W. Particulate matter induces alveolar epithelial cell DNA damage and apoptosis — Role of free radicals and the mitochondria. Am J Respir Cell Mol Biol 29:180–187 (2003).

    Article  PubMed  CAS  Google Scholar 

  34. Soberanes, S. et al. p53 mediates particulate matterinduced alveolar epithelial cell mitochondria-regulated apoptosis. Am J Respir Crit Care Med 174:1229–1238 (2006).

    Article  PubMed  CAS  Google Scholar 

  35. Stroh, A. et al. Iron oxide particles for molecular magnetic resonance imaging cause transient oxidative stress in rat macrophages. Free Radic Biol Med 36:976–984 (2004).

    Article  PubMed  CAS  Google Scholar 

  36. Starke, P. E. & Farber, J. L. Ferric iron and superoxide ions are required for the killing of cultured-hepatocytes by hydrogen-peroxide — evidence for the participation of hydroxyl radicals formed by an iron-catalyzed haber-weiss reaction. J Biol Chem 260:99–104 (1985).

    Google Scholar 

  37. Zhao, W., Devamanoharan, P. S. & Varma, S. D. Fructose induced deactivation of antioxidant enzymes: Preventive effect of pyruvate. Free Radic Res 33:23–30 (2000).

    Article  PubMed  CAS  Google Scholar 

  38. Collins, A. & Harrington, V. Repair of oxidative DNA damage: assessing its contribution to cancer prevention. Mutagenesis 17:489–493 (2002).

    Article  PubMed  CAS  Google Scholar 

  39. Lynch, I. & Dawson, K. A. Protein-nanoparticle interactions. Nano Today 3:40–47 (2008).

    Article  CAS  Google Scholar 

  40. Soenen, S. J. H., Nuytten, N., De Meyer, S.F., De Smedt, S.C. & De Cuyper, M. High intracellular iron oxide nanoparticle concentrations affect cellular cytoskeleton and focal adhesion kinase-mediated signaling. Small 6:832–842 (2010).

    Article  PubMed  CAS  Google Scholar 

  41. Huang, D. M. et al. The promotion of human mesenchymal stem cell proliferation by superparamagnetic iron oxide nanoparticles. Biomaterials 30:3645–3651 (2009).

    Article  PubMed  CAS  Google Scholar 

  42. Berry, C. C., Charles, S., Wells, S., Dalby, M. J. & Curtis, A. S. G. The influence of transferrin stabilised magnetic nanoparticles on human dermal fibroblasts in culture. Int J Pharm 269:211–225 (2004).

    Article  PubMed  CAS  Google Scholar 

  43. Chen, Y. C. et al. The inhibitory effect of superparamagnetic iron oxide nanoparticle (Ferucarbotran) on osteogenic differentiation and its signaling mechanism in human mesenchymal stem cells. Toxicol Appl Pharmacol 245:272–279 (2010).

    Article  PubMed  CAS  Google Scholar 

  44. Kostura, L., Kraitchman, D. L., Mackay, A. M., Pittenger, M. F. & Bulte, J. W. M. Feridex labeling of mesenchymal stem cells inhibits chondrogenesis but not adipogenesis or osteogenesis. NMR Biomed 17:513–517 (2004).

    Article  PubMed  Google Scholar 

  45. Arbab, A. S. et al. Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI. Blood 104:1217–1223 (2004).

    Article  PubMed  CAS  Google Scholar 

  46. Jung, T. T. K. et al. Effects of common topical otic preparations on the morphology of isolated cochlear outer hair cells. Acta Otolaryngol (Stockh) 121:135–139 (2001).

    Article  Google Scholar 

  47. Urban, M. R., Fermor, B., Lee, R. B. & Urban, J. P. G. Measurement of DNA in intervertebral disc and other autofluorescent cartilages using the dye Hoechst 33258. Anal Biochem 262:85–88 (1998).

    Article  PubMed  CAS  Google Scholar 

  48. Soeth, E. et al. Comparative analysis of bone marrow and venous blood isolates from gastrointestinal cancer patients for the detection of disseminated tumor cells using reverse transcription PCR. Cancer Res 57:3106–3110 (1997).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zi Gang Ge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L.L., Zhang, K., Xiong, C.Y. et al. Cytotoxicity of core-shell polystyrene magnetic beads and related mechanisms. Mol. Cell. Toxicol. 8, 217–227 (2012). https://doi.org/10.1007/s13273-012-0027-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-012-0027-3

Keywords

Navigation