Skip to main content
Log in

Assessment of DNA damage caused by locally produced hydroxyapatite-silica nanocomposite using Comet assay on human lung fibroblast cell line

  • Original Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

The growing interest of nanotechnology in dentistry has sparked various applications of biomaterials in nanoscale to be developed. The aim of this study was to evaluate the genotoxicity effect of locally produced hydroxyapatite-silica nanocomposite (School of Dental Sciences, Universiti Sains Malaysia, Malaysia) using Comet assay on human lung fibroblast cell line, MRC-5. Extraction of this test material was prepared and the concentrations which produced IC10, IC25 and IC50 in cytotoxicity tests (MTT assay) were recorded. Three specific concentrations, 0.00005 g/mL, 0.0009 g/mL and 0.1 g/mL for IC10, 1C25 and IC50 respectively were further used to evaluate the genotoxicity effect along with concurrent positive (hydrogen peroxide) and negative (Eagle’s Minimum Essential Medium) controls. There was no significant difference in the tail moments between negative control and treatment groups (0.00005 g/mL). Dose-dependent relationship was observed, where significant difference was noticed in the tail moments between 0.0009 g/mL and 0.1 g/mL groups with that of the negative control. However, since the values were still less than 5, it can be considered as non-genotoxic. The tail moments between different concentrations of hydroxyapatite-silica nanocomposite and positive control differed significantly (P/0.05). This concludes that the locally produced HAsilica nanocomposite is non-genotoxic by Comet assay under the present test conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mitra, S. B., Wu, D. & Holmes, B. N. An application of nanotechnology in advanced dental materials. J Am Dent Assoc 134:1382–1390 (2003).

    PubMed  CAS  Google Scholar 

  2. Terry, D. A. Direct applications of a nanocomposite resin system: Part 1-the evolution of contemporary composite materials. Pract Proced Aesthet Dent 16: 1–7 (2004).

    Google Scholar 

  3. Saunders, S. A. Current practicality of nanotechnology in dentistry. Part 1: Focus on nanocomposite restoratives and biomimetics. Clin Cosmet Investig Dent 1: 47–61 (2009).

    Article  CAS  Google Scholar 

  4. Dee, K. C., Puleo, D. A. & Bizios, R. Biomaterials, John Wiley and Sons, New Jersey, pp. 1–2 (2002). 5. IS

  5. International Organization of Standardization (ISO), Biological evaluation of medical devices (10993-3) (1999).

  6. Burhans, W. C. et al. Apoptosis-like yeast cell death in response to DNA damage and replication defects. Mutat Res 532:227–243 (2003).

    Article  PubMed  CAS  Google Scholar 

  7. Fang, B., Wan, Y. Z., Tang, T. T., Gao, C. & Dai, K. R. Proliferation and osteoblastic differentiation of human bone marrow stromal cells on hydroxyapatite/bacterial cellulose nanocomposite scaffolds. Tissue Eng Part A 15:1091–1098 (2009).

    Article  PubMed  CAS  Google Scholar 

  8. Diaz, M. et al. Synthesis and antimicrobial activity of a silver-hydroxyapatite nanocomposite. Nanomaterials 10:498–505 (2009).

    Google Scholar 

  9. Jantová, S., Letasiová, M., Birosová, L. & Palou T. M. In vitro effects of fluor-hydroxyapatite, fluorapatite and hydroxyapatite on colony formation, DNA damage and mutagenicity. Mutat Res 652:139–144 (2008).

    PubMed  Google Scholar 

  10. Xu, J. L. & Khor, K. A. Chemical analysis of silica doped hydroxyapatite biomaterials consolidated by a spark plasma sintering method. J Inorg Biochem 101: 187–195 (2007).

    Article  PubMed  CAS  Google Scholar 

  11. Ravarian, R. et al. Synthesis, characterization and bioactivity investigation of bioglass/hydroxyapatite composite. Ceramics International 36:291–297 (2010).

    Article  CAS  Google Scholar 

  12. Chen, L., Mccrate, J. M., Lee, J. C. & Li, H. The role of surface charge on the uptake and biocompatibility of hydroxyapatite nanoparticles with osteoblast cells. Nanotechnology 22:105–115 (2011).

    Google Scholar 

  13. Zhang, Z., Yang, Y. & Ong, J. L. Bionanotechnology: Global Aspect, Taylor & Francis Group, London, p. 249 (2008).

    Google Scholar 

  14. Sharma, V. et al. DNA damaging potential of zinc oxide nanoparticles in human epidermal cells. Toxicol Lett 185:211–218 (2009).

    Article  PubMed  CAS  Google Scholar 

  15. Collins, A. R. The Comet assay for DNA damage and repair: principles, applications, and limitations. Mol Biotechnol 26:249–261 (2004).

    Article  PubMed  CAS  Google Scholar 

  16. Tice, R. et al. Single cell gel/Comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35:206–221 (2000).

    Article  PubMed  CAS  Google Scholar 

  17. Park, S. Y. & Choi, J. H. Cytotoxicity, genotoxicity and ecotoxicity assay using human cell and environmental species for the screening of the risk from pollutant exposure. Environ Int 33:817–822 (2007).

    Article  PubMed  CAS  Google Scholar 

  18. Venturi, M. et al. Genotoxic activity in human faecal water and the role of bile acids: a study using the alkaline comet assay. Carcinogenesis 18:2353–2359 (1997).

    Article  PubMed  CAS  Google Scholar 

  19. Zeni, O. et al. Cytotoxicity investigation on cultured human blood cells treated with single-wall carbon nanotubes. Sensors 8:488–499 (2008).

    Article  CAS  Google Scholar 

  20. Mohammed, N., Kannan, T. P., Adam, H., Haswati, A. & Abdul, R. I. Genotoxicity evaluation of locally produced dental porcelain-an in vitro study using the ames and comet assays. Toxicol In Vitro 23:1145–1150 (2009).

    Article  Google Scholar 

  21. Katzer, A., Marquardt, H., Westendorf, J., Wening, J. V. & von Foerster, G. Polyetheretherketone-Cytotoxicity and mutagenicity in vitro. Biomaterials 23: 1749–1759 (2002).

    Article  PubMed  CAS  Google Scholar 

  22. Madle, S., Korte, A. & Ball, R. Experience with mutagenicity testing of new drugs: view point of a regulatory agency. Mutat Res 182:187–192 (1987).

    PubMed  CAS  Google Scholar 

  23. ICH. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (2008).

  24. Theiszovaa, M., Jantovaa, S., Draguňovab, J., Grznarovaa, P. & Palouc, M. Comparison the cytotoxicity of hydroxyapatite measured by direct cell counting and MTT test in murine fibroblast NIH-3T3 cells. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 149:393–396 (2005).

    Google Scholar 

  25. Napierska, D. et al. Size-dependent cytotoxicity of monodisperse silica nanoparticles in human endothelial cells. Small 5:846–853 (2009).

    Article  PubMed  CAS  Google Scholar 

  26. Horváthová, E. et al. The nature and origin of DNA single-strand breaks determined with the comet assay. Mutat Res 409:163–171 (1998).

    PubMed  Google Scholar 

  27. Ponti, J. et al. Genotoxicity and morphological transformation induced by cobalt nanoparticles and cobalt chloride: an in vitro study in Balb/3T3 mouse fibroblasts. Mutagenesis 24:439–445 (2009).

    Article  PubMed  CAS  Google Scholar 

  28. Trouiller, B., Reliene, R., Westbrook, A., Solaimani, P. & Schiestl, R. H. Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res 69:8784–8789 (2009).

    Article  PubMed  CAS  Google Scholar 

  29. Nabeshi, H. et al. Amorphous nanosilica induce endocytosis-dependent ROS generation and DNA damage in human keratinocytes. Part Fibre Toxicol 8:1 (2011).

    Article  PubMed  CAS  Google Scholar 

  30. Beckerman, M. Cellular Signaling in Health and Disease, Springer, New York, p. 149 (2009).

    Book  Google Scholar 

  31. Cemeli, E. et al. Antigenotoxic properties of selenium compounds on potassium dichromate and hydrogen peroxide. Teratog Carcinog Mutagen 2:53–67 (2003).

    Article  PubMed  Google Scholar 

  32. Hassan, A. & Swaminathan, D. An in vitro study to evaluate the genotoxicity of value added hydroxyapatite as a bone replacement material. Sains Malaysiana 40:139–147 (2011).

    Google Scholar 

  33. Rajab, N. F. et al. DNA damage evaluation of hydroxyapatite on fibroblast cell L929 using the single cell gel electrophoresis assay. Med J Malaysia 59:170–171 (2004).

    PubMed  Google Scholar 

  34. Barnes, A. C. et al. Reproducible comet assay of amorphous silica nanoparticles detects no genotoxicity. Nano Lett 8: 3069–3074 (2008).

    Article  PubMed  CAS  Google Scholar 

  35. Sayes, C. M. et al. Changing the dose metric for inhalation toxicity studies: short-term study in rats with engineered aerosolized amorphous silica nanoparticles. Inhal Toxicol 22:348–354 (2010).

    Article  PubMed  CAS  Google Scholar 

  36. ISO. International Organization of Standardization (ISO), Biological evaluation of medical devices (10993-5) (1999).

  37. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Method 65:55–63 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thirumulu Ponnuraj Kannan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Musa, M., Kannan, T.P., Masudi, S.M. et al. Assessment of DNA damage caused by locally produced hydroxyapatite-silica nanocomposite using Comet assay on human lung fibroblast cell line. Mol. Cell. Toxicol. 8, 53–60 (2012). https://doi.org/10.1007/s13273-012-0007-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-012-0007-7

Keywords

Navigation