Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by silica nanomaterials in human neuronal cell line


Nanotechnology is a highly promising molecular technology which may present a variety of hazards for environmental and human health. In this study, we investigated about the cytotoxicity and the mechanisms of action of LUDOX® silica nanoparticles (commercial colloidal silica nanoparticles in aqueous phase) with three different types (different size, stabilizers, and coating materials) in human neuronal cell line. Various dosages were treated for different incubation times and measured cell viability with MTT assay. Our results show that alumina coated smaller LUDOX® CL (13.3 nm) is less toxic than LUDOX® AS-20 (16.9 nm) and AM (15.3 nm) in neuronal cells. We measured the production of intracellular reactive oxygen species (ROS) to investigate the mechanism of cell death induced by LUDOX® nanoparticles. Treatment of 48 h of silica AS-20 and AM induced the production of ROS with a dose-dependent relationship. This treatment also did induce DNA-double strand breaks. Cells exposed to alumina coated silica nanoparticle showed a less sensitive response than those exposed to uncoated silica. Nevertheless, the parameters tested were rather limited in terms of gaining a full understanding of the oxidative stress and cellular response due to exposure to silica nanoparticles. Further studies on the mechanism to more clearly elucidate the silica induced neuronal cell death, as well as on the relationship between the physico-chemical properties of nanoparticles and their cytotoxicity are warranted to gain an understanding of the phenomenon of different sensitivities of various silica nanoparticles.

This is a preview of subscription content, access via your institution.


  1. 1.

    Nohynek, G. J., Lademann, J., Ribaud, C. & Roberts, M. S. Grey goo on the skin Nanotechnology, cosmetic and sunscreen safety. Crit Rev Toxicol 37:251–277 (2007).

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Rogueda, P. G. & Traini, D. The nanoscale in pulmonary delivery. Part 1: deposition, fate, toxicology and effects. Expert Opin Drug Deliv 4:595–606 (2007).

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Oberdorster, G., Oberdorster, E. & Oberdorster, J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839 (2005).

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Nel, A., Xia, T., Madler, L. & Li, N. Toxic potential of materials at the nanolevel. Science 311:622–627 (2006).

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Handy, R. D., Owen, R. & Valsami-Jones, E. The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology 17:315–325 (2008).

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Yu, J., Baek, M., Chung, H. E. & Choi, S. J. Physicochemical properties affecting the potential in vitro cytotoxicity of inorganic layered nanoparticls. Tox Environ Health Sci 2:149–152 (2010).

    Google Scholar 

  7. 7.

    Lu, J., Liong, M., Zink, J. I. & Tamanoi, F. Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. Small 3:1341–1346 (2007).

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Zhao, J., Wu, P., Brancewicz, C. & Li, Y. A liposomecontaining slurry for tungsten chemical mechanical polishing. J Electrochem Soc 15:225–230 (2007).

    Article  Google Scholar 

  9. 9.

    Fubini, B. & Hubbard, A. Reactive oxygen species and reactive nitrogen species generation by silica in inflammation and fibrosis. Free Rad Biol Med 34:1507–1516 (2003).

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Napierska, D. et al. Size-dependent cytotoxicity of monodisperse silica nanoparticles in human endothelial cells. Small 5:846–853 (2009).

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Park, E. J. & Park, K. Oxidative stress and pro-inflammatory responses induced by silica nanoparticles in vivo and in vitro. Toxicol Lett 184:18–25 (2009).

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Song, Y., Li, X. & Du, X. Exposure to nanoparticles is related to pleural effusion, pulmonary fibrosis and granuloma. Eur Respir J 34:559–567 (2009).

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Shvedova, A. A. et al. Critical issues in the evaluation of possible adverse pulmonary effects resulting from airborne nanoparticles. In: Nanotoxicology: Characterization, Dosing, and Health Effects (Monterio-Riviere NA, Tran CL, eds). New York: CRC Press, 225–236 (2007).

    Google Scholar 

  14. 14.

    Green, M. & Howman, E. Semiconductor quantum dots and free radical induced DNA nicking. Chem Commun 121:121–123 (2005).

    Article  Google Scholar 

  15. 15.

    Lin, W., Huang, Y. W., Zhou, X. D. & Ma, Y. In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicol Appl Pharmacol 217:252–259 (2006).

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Monteiller, C. et al. The pro-inflammatory effects of low-toxicity low-solubility particles, nanoparticles and fine particles, on epithelial cells in vitro: the role of surface area. Occup Environ Med 64:609–615 (2007).

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Kaewamatawong, T. et al. Acute and subacute pulmonary toxicity of low dose of ultrafine colloidal silica particles in mice after intratracheal instillation. Toxicol Pathol 34:958–965 (2006).

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Anderson, D. & Plewa, M. J. The international comet assay workshop. Mutagenesis 13:67–73 (1998).

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Fairbairn, D. W., Walburger, D. K., Fairbairn, J. J. & O’Neill, K. L. Key morphologic changes and DNA strand breaks in human lymphoid cells: discriminating apoptosis from necrosis. Scanning 18:407–416 (1996).

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Speit, G. & Hartmann, A. The comet assay (single-cell gel test). A sensitive genotoxicity test for the detection of DNA damage and repair. Methods Mol Biol 113:203–212 (1999).

    CAS  PubMed  Google Scholar 

  21. 21.

    Oberdorster, G., Sharp, Z. & Atudorei, V. Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 16:437–445 (2004).

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Mistry, A., Stolnik, S. & Illum, L. Nanoparticles for direct nose-to-brain delivery of drugs. Int J Pharm 379:146–157 (2009).

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Lockman, P. R., Koziara, J. M., Mumper, R. J. & Allen, D. D. Nanoparticle surface charges alter blood-brain barrier integrity and permeability. J Drug Target 12:635–641 (2004).

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Ribot, E. et al. Microglia used as vehicles for both inducible thymidine kinase gene therapy and MRI contrast agents for glioma therapy. Cancer Gene Ther 14:724–737 (2007).

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Voisin, P. et al. Use of lanthanide-grafted inorganic nanoparticles as effective contrast agents for cellular uptake imaging. Bioconjug Chem 18:1053–1063 (2007).

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Choi, J., Zheng, Q., Katz, H. E. & Guilarte, T. R. Silica-based nanoparticle uptake and cellular response by primary microglia. Environ Health Perspect 118:589–595 (2010).

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Hussain, S. M. et al. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19:975–983 (2005).

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Sayes, C. M. et al. Nano-C60 cytotoxicity is due to lipid peroxidation. Biomaterials 26:7587–7595 (2005).

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Foster, K. A. et al. Optical and pharmacological tools to investigate the role of mitochondria during oxidative stress and neurodegeneratation. Prog Neurobiol 79:136–171 (2006).

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Limbach, L. K. et al. Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress. Environ Sci Technol 41:4158–4163 (2007).

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Block, M. L., Zecca, L. & Hong, J. S. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8:57–69 (2007).

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Long, T. C. et al. Nanosize titanium dioxide stimulates reactive oxygen species in brain microglia and damages neurons in vitro. Environ Health Perspect 115:1631–1637 (2007).

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Calderon-Garciduenas, L. et al. Air pollution and brain damage. Toxicol Pathol 30:373–389 (2002).

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Calderon-Garciduenas, L. et al. Brain inflammation and Alzheimer’s-like pathology in individuals exposed to severe air pollution. Toxicol Pathol 32:650–658 (2004).

    Article  PubMed  Google Scholar 

  35. 35.

    Yoshida, Y. et al. Application of watersoluble radical initiator, 2,2-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride, to a study of oxidative stress. Free Rad Res 38:375–384 (2004).

    CAS  Article  Google Scholar 

  36. 36.

    Peters, K. et al. Metallic nanoparticles exhibit paradoxical effects on oxidative stress and proinflammatory response in endothelial cells in vitro. Inter J Immunopath Pharmaco 20:685–695 (2007).

    CAS  Google Scholar 

  37. 37.

    Pulskamp, K., Diabate, S. & Krug, H. F. Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol Lett 168:58–74 (2007).

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Park, E. J., Choi, J., Park, Y. & Park, K. Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells. Toxicology (1–2):90–100 (2008).

  39. 39.

    Wang, F. et al. Oxidative stress contributes to silica nanoparticle-induced cytotoxicity in human embryonic kidney cells. Toxicol In Vitro 23:808–815 (2009).

    CAS  Article  PubMed  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Sung Ik Yang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kim, YJ., Yu, M., Park, HO. et al. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by silica nanomaterials in human neuronal cell line. Mol. Cell. Toxicol. 6, 336–343 (2010).

Download citation


  • Silica nanoparticles
  • Cytotoxicity
  • Reactive Oxigen Species (ROS)
  • Comet assay
  • Human neuronal cell