Skip to main content

Interactive trajectory modification and generation with FPCA


Moving object analysis is a constantly growing field with numerous concrete applications in terms of traffic understanding, prediction and simulation. While many algorithms and analytic processes exist, there are still areas of investigation with novel trajectory analysis methods. As such, the geometric information analyses data with respect to its statistical distribution along extracted dimensions. This opens new ways of gaining a better understanding of large and complex trajectory data sets while providing flexible data manipulations. In this paper, we report our investigations with the development of an interactive methodology based on the geometric information analytic process where users can analyze trajectories sets, cluster and deform them maintaining the actual statistical properties of the investigated trajectories. As a contribution, this paper shows how Functional Data Analysis can provide novel support for trajectory analyses taking into account the statistical properties of the investigated clusters. We also provide recommendations for efficient usage of the process, considering trajectory registration, initial clustering, trajectory deformation and generation. These recommendations are illustrated with actual examples validated by a domain expert of air traffic flow analysis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. Thomas, J.J., Cook, K.A.: A visual analytics agenda. IEEE Comput. Graph. Appl 26(1), 10–13 (2006).

    Article  Google Scholar 

  2. Heer, J., Kandel, S.: Interactive analysis of big data. XRDS 19(1), 50–54 (2012).

    Article  Google Scholar 

  3. Amari, S.-I.: Information geometry and its applications, 1st edn. Springer Publishing Company, Incorporated, Berlin (2016)

    Book  Google Scholar 

  4. Amari, S.-I.: Differential-geometrical methods in statistics, 1st edn. Springer, New York (1985)

    Book  Google Scholar 

  5. Hurter, C., Puechmorel, S., Nicol, F., Telea, A.: Functional decomposition for bundled simplification of trail sets. IEEE Trans. Vis. Comput. Graph. 24(1), 500–510 (2018)

    Article  Google Scholar 

  6. Mark, H., Workman, J.: Statistics in spectroscopy. Elsevier Science, 2003.

  7. Prado, R., West, M.: Time series: modeling, computation, and inference. Taylor & Francis, 2010

  8. Winkler, O.W.: Interpreting economic and social data: a foundation of descriptive statistics, ser, mathematics and statistics. Springer, Berlin (2009)

    Book  Google Scholar 

  9. Ramsay, J., Silverman, B.: Functional data analysis ser, Springer series in statistics. Springer, Berlin (2005)

    Google Scholar 

  10. Nuic, A.: User manual for the base of aircraft data (bada) revision 3.10. Atmosphere 2010, 001 (2010)

    Google Scholar 

  11. Nuic, A., Poles, D., Mouillet, V.: Bada: An advanced aircraft performance model for present and future ATM systems. Int J Adapt Control Signal Process 24(10), 850–866 (2010)

    Article  Google Scholar 

  12. Yanto, J., Liem, R.P.: Aircraft fuel burn performance study: a data-enhanced modeling approach. Transport. Res. Part D Transport. Environ. 65, 574–595 (2018)

    Article  Google Scholar 

  13. Saeys, W., De Ketelaere, B., Darius, P.: Potential applications of functional data analysis in chemometrics. J. Chemometr. 22(5), 335–344 (2008).

    Article  Google Scholar 

  14. Jacques, J., Preda, C.: Functional data clustering: a survey. Adv Data Anal Classif 8(3), 231–255 (2014)

    MathSciNet  Article  Google Scholar 

  15. Olive, X., Bieber, P.: Quantitative assessments of runway excursion precursors using mode s data 06 (2018)

  16. Jarry, G., Delahaye, D., Nicol, F., Féron, E.: Aircraft atypical approach detection using functional principal component analysis, In: SESAR Innovations Days 2018, (2018)

  17. Jarry, G., Delahaye, D., Nicol, F., Feron, E.: Aircraft atypical approach detection using functional principal component analysis. J. Air Transport. Manag. 84, 101787 (2020)

    Article  Google Scholar 

  18. Hassoumi, A., Lobo, M. J., Jarry, G., Peysakhovich, V., Hurter, C.: Interactive shape based brushing technique for trail sets (2019)

  19. Adrienko, N., Adrienko, G.: Spatial generalization and aggregation of massive movement data. IEEE Trans. Vis. Comput. Graph. 17(2), 205–219 (2011)

    Article  Google Scholar 

  20. Scheepens, R., Willems, N., van de Wetering, H., van Wijk, J. J.: Interactive visualization of multivariate trajectory data with density maps, In: 2011 IEEE Pacific Visualization Symposium, March 2011, pp. 147–154

  21. Giannotti, F., Nanni, M., Pinelli, F., Pedreschi, D.: Trajectory pattern mining, In: Proceedings of the 13th ACM SIGKDD International conference on knowledge discovery and data mining, ser. KDD ’07. New York, NY, USA: ACM, 2007, pp. 330–339.

  22. Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data’’. In: Egenhofer, M.J., Bertino, E. (eds.) Advances in spatial and temporal databases., pp. 364–381. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  23. Delahaye, D., Puechmorel, S., Alam, S., Féron, E.: Trajectory mathematical distance applied to airspace major flows extraction. In: EIWAC 2017 The 5th ENRI International Workshop on ATM/CNS, (2017)

  24. Jarry, G., Couellan, N., Delahaye, D.: “On the use of generative adversarial networks for aircraft trajectory generation and atypical approach detection (2019)

  25. Holten, D.: Hierarchical edge bundles: visualization of adjacency relations in hierarchical data. IEEE Trans. Vis. Comput. Graph. 12(5), 741–748 (2006)

    Article  Google Scholar 

  26. Brehmer, M., Munzner, T.: A multi-level typology of abstract visualization tasks. IEEE Trans. Vis. Comput. Graph. 19(12), 2376–2385 (2013)

    Article  Google Scholar 

  27. Lhuillier, A., Hurter, C., Telea, A.: “State of the art in edge and trail bundling techniques,” Computer Graphics Forum, (2017)

  28. Hurter, C., Telea, A., Ersoy, O.: MoleView: an attribute and structure-based semantic lens for large element-based plots. IEEE Trans. Vis. Comput. Graph. 17(12), 2600–2609 (2011)

    Article  Google Scholar 

  29. Tominski, C., Abello, J., van Ham, F., Schumann, H.: “Fisheye tree views and lenses for graph visualization,” In: Proceeding of international conference on information visualisation (IV), (2006), pp. 17–24

  30. Lambert, A., Auber, D., Melancon, G.: “Living flows: Enhanced exploration of edge-bundled graphs based on GPU-intensive edge rendering,” In: Proceeding of \(14^{th}\) International conference on information visualisation, (2010), pp. 523–530

  31. Wong, N., Carpendale, S.: “Supporting interactive graph exploration using edge plucking,” In: Proc. SPIE visualization and data analysis, vol. 6495, (2007), pp. 235–246

  32. Riche, N. H., Dwyer, T., Lee, B., Carpendale, S.: “Exploring the design space of interactive link curvature in network diagrams,” In: Proceedings of the international working conference on advanced visual interfaces (AVI). ACM, 2012, pp. 506–513

  33. Luo, S.-J., Liu, C.-L., Chen, B.-Y., Ma, K.-L.: Ambiguity-free edge-bundling for interactive graph visualization. IEEE Trans. Vis. Comput. Graph. 18(5), 810–821 (2012).

    Article  Google Scholar 

  34. Brosz, J., Nacenta, M. A., Pusch, R., Carpendale, S., Hurter, C.: “Transmogrification: Causal manipulation of visualizations,” In: Proceeding of the \(26^{th}\) ACM Symposium on User Interface Software and Technology (UIST), 2013, pp. 97–106.

  35. Cryer, J.D.: Time series analysis, 1st edn. Wadsworth Publ Co., Belmont (1986)

    MATH  Google Scholar 

  36. Andrienko, G., Andrienko, N., Bak, P., Keim, D., Kisilevich, S., Wrobel, S.: A conceptual framework and taxonomy of techniques for analyzing movement. J. Vis. Lang. Comput. 22(3), 213–232 (2011)

    Article  Google Scholar 

  37. Andrienko, G., Andrienko, N.: A general framework for using aggregation in visual exploration of movement data. Cartograph J 47(1), 22–40 (2010).

    Article  Google Scholar 

  38. Bach, B., Dragicevic, P., Archambault, D., Hurter, C., Carpendale, S., “A descriptive framework for temporal data visualizations based on generalized space-time cubes,” In: Computer Graphics Forum, vol. 36, no. 6. Wiley Online Library, pp. 36–61 (2017)

  39. Hochheiser, H., Shneiderman, B.: “Interactive exploration of time series data,” In: Proceedings of the 4th International Conference on Discovery Science, ser. DS ’01. Berlin, Heidelberg: Springer-Verlag, 2001, pp. 441–446.

  40. Buono, P., Aris, A., Plaisant, C., Khella, A., Shneiderman, B.:“Interactive pattern search in time series,” In: Visualization and Data Analysis, 2005

  41. Scheepens, R., Hurter, C., Van De Wetering, H., Van Wijk, J.J.: Visualization, selection, and analysis of traffic flows. IEEE Trans. Vis. Comput. Graph. 22(1), 379–388 (2016)

    Article  Google Scholar 

  42. C. Hurter, “Image-based visualization: Interactive multidimensional data exploration. Syn. Lect. Vis. 3(2), 1–127, (2015)

  43. Hurter, C., Conversy, S., Gianazza, D., Telea, A.: Interactive image-based information visualization for aircraft trajectory analysis. Transport. Res. Part C Emerg. Technol. 47, 207–227 (2014)

    Article  Google Scholar 

  44. Hurter, C., Tissoires, B., Conversy, S.: Fromdady: Spreading aircraft trajectories across views to support iterative queries. IEEE Trans. Vis. Comput. Graph. 15(6), 1017–1024, (2009).

  45. Hurter, C., Riche, N.H., Drucker, S.M., Cordeil, M., Alligier, R., Vuillemot, R.: Fiberclay: Sculpting three dimensional trajectories to reveal structural insights. IEEE Trans. Vis. Comput. Graph. 25(1), 704–714 (2019)

    Article  Google Scholar 

  46. Adams, R. A., Fournier, J. J.: Sobolev spaces. Elsevier, 2003, vol. 140

  47. Stark, H., Woods, J.: Probability, random processes, and estimation theory for engineers. Prentice-Hall, 1986.

  48. McLachlan, G., Krishnan, T.: The EM algorithm and extensions. John Wiley & Sons, 2007, vol. 382

  49. Hinneburg, A., Keim, D. A.: “Optimal grid-clustering: Towards breaking the curse of dimensionality in high-dimensional clustering,” (1999)

  50. P. Bickel, P. Diggle, S. Fienberg, U. Gather, I. Olkin, and S. Zeger, “Springer series in statistics,” 2009

  51. R. J. Campello, D. Moulavi, and J. Sander, “Density-based clustering based on hierarchical density estimates,” in Pacific-Asia conference on knowledge discovery and data mining. Springer, 2013, pp. 160–172

  52. Everts, M.H., Begue, E., Bekker, H., Roerdink, J.B.T.M., Isenberg, T.: Exploration of the brain’s white matter structure through visual abstraction and multi-scale local fiber tract contraction. IEEE Trans. Vis. Comput. Graph. 21(7), 808–821 (2015)

    Article  Google Scholar 

  53. ICAO, “Ecac.ceac doc 29, 3rd edition, report on standard method of computing noise contours around civil airports,” vol. 2, (2005).

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Gabriel Jarry.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jarry, G., Hassoumi, A., Delahaye, D. et al. Interactive trajectory modification and generation with FPCA. CEAS Aeronaut J 13, 371–383 (2022).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Geographic/geospatial visualization
  • Data aggregation
  • Data cleaning
  • Data clustering
  • Data transformation and representation
  • Data editing
  • Manipulation and deformation
  • Multidimensional data
  • Geometry-based techniques