Thomas, J.J., Cook, K.A.: A visual analytics agenda. IEEE Comput. Graph. Appl 26(1), 10–13 (2006). https://doi.org/10.1109/MCG.2006.5
Article
Google Scholar
Heer, J., Kandel, S.: Interactive analysis of big data. XRDS 19(1), 50–54 (2012). https://doi.org/10.1145/2331042.2331058
Article
Google Scholar
Amari, S.-I.: Information geometry and its applications, 1st edn. Springer Publishing Company, Incorporated, Berlin (2016)
Book
Google Scholar
Amari, S.-I.: Differential-geometrical methods in statistics, 1st edn. Springer, New York (1985)
Book
Google Scholar
Hurter, C., Puechmorel, S., Nicol, F., Telea, A.: Functional decomposition for bundled simplification of trail sets. IEEE Trans. Vis. Comput. Graph. 24(1), 500–510 (2018)
Article
Google Scholar
Mark, H., Workman, J.: Statistics in spectroscopy. Elsevier Science, 2003. https://books.google.fr/books?id=qTZIYUrSA_oC
Prado, R., West, M.: Time series: modeling, computation, and inference. Taylor & Francis, 2010
Winkler, O.W.: Interpreting economic and social data: a foundation of descriptive statistics, ser, mathematics and statistics. Springer, Berlin (2009)
Book
Google Scholar
Ramsay, J., Silverman, B.: Functional data analysis ser, Springer series in statistics. Springer, Berlin (2005)
Google Scholar
Nuic, A.: User manual for the base of aircraft data (bada) revision 3.10. Atmosphere 2010, 001 (2010)
Google Scholar
Nuic, A., Poles, D., Mouillet, V.: Bada: An advanced aircraft performance model for present and future ATM systems. Int J Adapt Control Signal Process 24(10), 850–866 (2010)
Article
Google Scholar
Yanto, J., Liem, R.P.: Aircraft fuel burn performance study: a data-enhanced modeling approach. Transport. Res. Part D Transport. Environ. 65, 574–595 (2018)
Article
Google Scholar
Saeys, W., De Ketelaere, B., Darius, P.: Potential applications of functional data analysis in chemometrics. J. Chemometr. 22(5), 335–344 (2008). https://doi.org/10.1002/cem.1129
Article
Google Scholar
Jacques, J., Preda, C.: Functional data clustering: a survey. Adv Data Anal Classif 8(3), 231–255 (2014)
MathSciNet
Article
Google Scholar
Olive, X., Bieber, P.: Quantitative assessments of runway excursion precursors using mode s data 06 (2018)
Jarry, G., Delahaye, D., Nicol, F., Féron, E.: Aircraft atypical approach detection using functional principal component analysis, In: SESAR Innovations Days 2018, (2018)
Jarry, G., Delahaye, D., Nicol, F., Feron, E.: Aircraft atypical approach detection using functional principal component analysis. J. Air Transport. Manag. 84, 101787 (2020)
Article
Google Scholar
Hassoumi, A., Lobo, M. J., Jarry, G., Peysakhovich, V., Hurter, C.: Interactive shape based brushing technique for trail sets (2019)
Adrienko, N., Adrienko, G.: Spatial generalization and aggregation of massive movement data. IEEE Trans. Vis. Comput. Graph. 17(2), 205–219 (2011)
Article
Google Scholar
Scheepens, R., Willems, N., van de Wetering, H., van Wijk, J. J.: Interactive visualization of multivariate trajectory data with density maps, In: 2011 IEEE Pacific Visualization Symposium, March 2011, pp. 147–154
Giannotti, F., Nanni, M., Pinelli, F., Pedreschi, D.: Trajectory pattern mining, In: Proceedings of the 13th ACM SIGKDD International conference on knowledge discovery and data mining, ser. KDD ’07. New York, NY, USA: ACM, 2007, pp. 330–339. http://doi.acm.org/10.1145/1281192.1281230
Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data’’. In: Egenhofer, M.J., Bertino, E. (eds.) Advances in spatial and temporal databases., pp. 364–381. Springer, Heidelberg (2005)
Chapter
Google Scholar
Delahaye, D., Puechmorel, S., Alam, S., Féron, E.: Trajectory mathematical distance applied to airspace major flows extraction. In: EIWAC 2017 The 5th ENRI International Workshop on ATM/CNS, (2017)
Jarry, G., Couellan, N., Delahaye, D.: “On the use of generative adversarial networks for aircraft trajectory generation and atypical approach detection (2019)
Holten, D.: Hierarchical edge bundles: visualization of adjacency relations in hierarchical data. IEEE Trans. Vis. Comput. Graph. 12(5), 741–748 (2006)
Article
Google Scholar
Brehmer, M., Munzner, T.: A multi-level typology of abstract visualization tasks. IEEE Trans. Vis. Comput. Graph. 19(12), 2376–2385 (2013)
Article
Google Scholar
Lhuillier, A., Hurter, C., Telea, A.: “State of the art in edge and trail bundling techniques,” Computer Graphics Forum, (2017)
Hurter, C., Telea, A., Ersoy, O.: MoleView: an attribute and structure-based semantic lens for large element-based plots. IEEE Trans. Vis. Comput. Graph. 17(12), 2600–2609 (2011)
Article
Google Scholar
Tominski, C., Abello, J., van Ham, F., Schumann, H.: “Fisheye tree views and lenses for graph visualization,” In: Proceeding of international conference on information visualisation (IV), (2006), pp. 17–24
Lambert, A., Auber, D., Melancon, G.: “Living flows: Enhanced exploration of edge-bundled graphs based on GPU-intensive edge rendering,” In: Proceeding of \(14^{th}\) International conference on information visualisation, (2010), pp. 523–530
Wong, N., Carpendale, S.: “Supporting interactive graph exploration using edge plucking,” In: Proc. SPIE visualization and data analysis, vol. 6495, (2007), pp. 235–246
Riche, N. H., Dwyer, T., Lee, B., Carpendale, S.: “Exploring the design space of interactive link curvature in network diagrams,” In: Proceedings of the international working conference on advanced visual interfaces (AVI). ACM, 2012, pp. 506–513
Luo, S.-J., Liu, C.-L., Chen, B.-Y., Ma, K.-L.: Ambiguity-free edge-bundling for interactive graph visualization. IEEE Trans. Vis. Comput. Graph. 18(5), 810–821 (2012). https://doi.org/10.1109/TVCG.2011.104
Article
Google Scholar
Brosz, J., Nacenta, M. A., Pusch, R., Carpendale, S., Hurter, C.: “Transmogrification: Causal manipulation of visualizations,” In: Proceeding of the \(26^{th}\) ACM Symposium on User Interface Software and Technology (UIST), 2013, pp. 97–106. http://doi.acm.org/10.1145/2501988.2502046
Cryer, J.D.: Time series analysis, 1st edn. Wadsworth Publ Co., Belmont (1986)
MATH
Google Scholar
Andrienko, G., Andrienko, N., Bak, P., Keim, D., Kisilevich, S., Wrobel, S.: A conceptual framework and taxonomy of techniques for analyzing movement. J. Vis. Lang. Comput. 22(3), 213–232 (2011)
Article
Google Scholar
Andrienko, G., Andrienko, N.: A general framework for using aggregation in visual exploration of movement data. Cartograph J 47(1), 22–40 (2010). https://doi.org/10.1179/000870409X12525737905042
Article
Google Scholar
Bach, B., Dragicevic, P., Archambault, D., Hurter, C., Carpendale, S., “A descriptive framework for temporal data visualizations based on generalized space-time cubes,” In: Computer Graphics Forum, vol. 36, no. 6. Wiley Online Library, pp. 36–61 (2017)
Hochheiser, H., Shneiderman, B.: “Interactive exploration of time series data,” In: Proceedings of the 4th International Conference on Discovery Science, ser. DS ’01. Berlin, Heidelberg: Springer-Verlag, 2001, pp. 441–446. http://dl.acm.org/citation.cfm?id=647858.738708
Buono, P., Aris, A., Plaisant, C., Khella, A., Shneiderman, B.:“Interactive pattern search in time series,” In: Visualization and Data Analysis, 2005
Scheepens, R., Hurter, C., Van De Wetering, H., Van Wijk, J.J.: Visualization, selection, and analysis of traffic flows. IEEE Trans. Vis. Comput. Graph. 22(1), 379–388 (2016)
Article
Google Scholar
C. Hurter, “Image-based visualization: Interactive multidimensional data exploration. Syn. Lect. Vis. 3(2), 1–127, (2015) https://doi.org/10.2200/S00688ED1V01Y201512VIS006
Hurter, C., Conversy, S., Gianazza, D., Telea, A.: Interactive image-based information visualization for aircraft trajectory analysis. Transport. Res. Part C Emerg. Technol. 47, 207–227 (2014)
Article
Google Scholar
Hurter, C., Tissoires, B., Conversy, S.: Fromdady: Spreading aircraft trajectories across views to support iterative queries. IEEE Trans. Vis. Comput. Graph. 15(6), 1017–1024, (2009).http://dx.doi.org/10.1109/TVCG.2009.145
Hurter, C., Riche, N.H., Drucker, S.M., Cordeil, M., Alligier, R., Vuillemot, R.: Fiberclay: Sculpting three dimensional trajectories to reveal structural insights. IEEE Trans. Vis. Comput. Graph. 25(1), 704–714 (2019)
Article
Google Scholar
Adams, R. A., Fournier, J. J.: Sobolev spaces. Elsevier, 2003, vol. 140
Stark, H., Woods, J.: Probability, random processes, and estimation theory for engineers. Prentice-Hall, 1986. https://books.google.fr/books?id=2pFRAAAAMAAJ
McLachlan, G., Krishnan, T.: The EM algorithm and extensions. John Wiley & Sons, 2007, vol. 382
Hinneburg, A., Keim, D. A.: “Optimal grid-clustering: Towards breaking the curse of dimensionality in high-dimensional clustering,” (1999)
P. Bickel, P. Diggle, S. Fienberg, U. Gather, I. Olkin, and S. Zeger, “Springer series in statistics,” 2009
R. J. Campello, D. Moulavi, and J. Sander, “Density-based clustering based on hierarchical density estimates,” in Pacific-Asia conference on knowledge discovery and data mining. Springer, 2013, pp. 160–172
Everts, M.H., Begue, E., Bekker, H., Roerdink, J.B.T.M., Isenberg, T.: Exploration of the brain’s white matter structure through visual abstraction and multi-scale local fiber tract contraction. IEEE Trans. Vis. Comput. Graph. 21(7), 808–821 (2015)
Article
Google Scholar
ICAO, “Ecac.ceac doc 29, 3rd edition, report on standard method of computing noise contours around civil airports,” vol. 2, (2005). https://www.aircraftnoisemodel.org/pdf/Doc29_3rd_Edition_Vol2_final.pdf