Advertisement

CEAS Aeronautical Journal

, Volume 9, Issue 4, pp 683–694 | Cite as

Propeller blade debris kinematics

Blade debris trajectory computation with aerodynamic effects using new FSI formulations
  • Roland Ortiz
  • Folco Casadei
  • Sylvain Mouton
  • Jean Francois Sobry
Original Paper
  • 54 Downloads

Abstract

The paper presents numerical models and simulations performed at ONERA to investigate aerodynamic effects on the trajectory of an open rotor blade fragment released or lost during an engine burst event. The models are based on finite elements for the structural part and on finite volumes for the fluid part, and are implemented in the EUROPLEXUS explicit code. Fluid–structure interaction is taken into account by an embedded (or immersed) technique and precision is enhanced by refining the fluid grid locally using automatic mesh adaptivity. A new methodology has also been implemented to limit the air volume to be discretized in the numerical model, thus reducing the size of the fluid mesh and allowing fine-mesh (adaptive) computer simulations in a reasonable CPU time.

Keywords

Fluid–structure interaction Mesh adaptivity Blade trajectory CROR EUROPLEXUS 

Notes

Acknowledgements

The authors would like to thank Clean Sky for trust and support in this project.

References

  1. 1.
    Brunet, M., Lafage, R., Aubry, S., Junior, A., Catros, J.-Y.: The Clean Sky programme: environmmental benefits at aircraft level. In: 15th AIAA Aviation Technology, Integration and Operations Conference, Dallas, TX (2015)Google Scholar
  2. 2.
    Stuermer, A., Akkermans, R.A.D.: Validation of aerodynamic and aeroacoustic simulations of contra-rotating open rotors at low-speed flight conditions. In: 32nd AIAA Applied Aerodynamics Conference, Atlanta, GA (2014)Google Scholar
  3. 3.
    Vlastuin, J., Dejeu, C., Louet, A., Talbotec, J., Lepot, I., Lonfils, T., Leborgne, M.: Open rotor design strategy: from wind tunnel tests to full scale multi-disciplinary design. In: ASME Turbo Expo, Montreal, Quebec, Canada, June 15–19 (2015)Google Scholar
  4. 4.
    Brandvik, T., Hall, C., Parry, A.B.: Angle-of-attack effects on counter-rotating propellers at take-off. In: ASME Turbo Expo, Copenhagen, Danmark, 11–15 June (2012)Google Scholar
  5. 5.
    Vion, L., Delattre, G., Falissard, F., Jacquin, L.: Counter-rotating open rotor (CROR): flow physics and simulation. 20éme Congrés de Mécanique, Besançon, August 29–September 2 (2011)Google Scholar
  6. 6.
    Sturmer, A., Akkermans, R.A.D.: Multidisciplinary analysis of CROR propulsion systems: DLR activities in the JTI SFWA project. CEAS Aeronaut. J. 5(3), 265–277 (2014)CrossRefGoogle Scholar
  7. 7.
    Negulescu, C.: Airbus AI-PX7 CROR design features and aerodynamics. SAE Int. J. Aerosp. 6(2), 626–642 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Remacha, M., Martino, E.: Large damage residual strength analysis: simulations and tests. In: ECCM16—16th European conference on composite materials, Seville, Spain, 22–26 June (2014)Google Scholar
  9. 9.
    Seng, S., Frankenberger, C., Ruggeri, C.R., Revilock, D.M., Pereira, J.M., Carney, K.S., Emmerling, W.C.: Dynamic open-rotor composite shield impact test report. NASA/TM, DOT/FAA/TC-15/22 (2015)Google Scholar
  10. 10.
    Carney, K., Pereira, M., Kohlman, L., Goldberg, R., Envia, E., Lawrence, C., Roberts, G., Emmerling W.: Weight assessment for fuselage shielding on aircraft with open-rotor engines and composite blade loss. NASA/TM, DOT/FAA/TC-13/34 (2013)Google Scholar
  11. 11.
    EUROPLEXUS user’s manual. Commissariat à l’énergie atomique, European Commission (JRC). On-line version:http://europlexus.jrc.ec.europa.eu
  12. 12.
    Casadei, F., Larcher, M., Leconte, N.: Strong and weak forms of a fully non-conforming FSI algorithm in fast transient dynamics for blast loading of structures. In: COMPDYN 2011 conference, Corfu, Greece, 25–28 May (2011)Google Scholar
  13. 13.
    Casadei, F., Leconte, N.: FLSW: a weak, embedded-type Fluid-Structure interaction model with CCFV in EUROPLEXUS. Technical note JRC65826 (2011)Google Scholar
  14. 14.
    Beccantini, A., Casadei, F., Galon, P.: Improvement of the FLSW model for cell-centered finite volumes in EUROPLEXUS. Report DEN/DANS/DM2S/STMF/LATF/NT/13-019/A (2013)Google Scholar
  15. 15.
    Casadei, F., Díez, P., Verdugo, F.: An algorithm for mesh refinement and un-refinement in fast transient dynamics. Int. J. Comput. Methods 10(4), 1350018-1–1350018-31 (2013)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Casadei, F., Valsamos, G., Beccantini, A.: Combination of mesh adativity with Fluid-Structure Interaction in EUROPLEXUS. EUR Report 26617 EN (2014)Google Scholar
  17. 17.
    Ortiz, R., Delsart, D., Sobry, J-F.: CROR WP1 blade structure and certification. Technical report CROR, R131, R132, R133, RT 13/14407 DAPP/DADS (2010)Google Scholar
  18. 18.
    Ortiz, R.: JTI Clean Sky SFWA-ITD WP 2.2.2.8. PBR-propeller blade kinematics AI-PX4 blade trajectory: study 2012-1. RT 6/19592 DAAP/DADS (2012)Google Scholar
  19. 19.
    Ortiz, R.: JTI Clean Sky SFWA-ITD WP 2.2.2. Task 2.2.2.8, PBR propeller blade kinematics, AI-PX6 blade trajectory with ALE GLOB approach. Report RT/7/20894 DAAP/DADS (2013)Google Scholar
  20. 20.
    Mouton, S., Rantet, E., Gouverneur, G., Verbeke, C.: Combined wind tunnel tests and flow simulations for light aircrafts performance prediction. In: AAAF 47th International Symposium of Applied Aerodynamics, Paris, 26–28 March (2012)Google Scholar
  21. 21.
    Mouton, S.: CFD simulations of the flow over open rotor blade fragments. RT 1/20878 DAAP (2012)Google Scholar
  22. 22.
    Mouton, S., Bourez, J-P., Verbeke, C.: Wind tunnel testing of open rotor blade fragments. RT 5/20878 DAAP (2013)Google Scholar
  23. 23.
    Ortiz, R., Mialon, B.: Open rotor blade fragment trajectory testing and simulation synthesis report. RT 6/20878 DAAP (2013)Google Scholar

Copyright information

© Deutsches Zentrum für Luft- und Raumfahrt e.V. 2018

Authors and Affiliations

  • Roland Ortiz
    • 1
  • Folco Casadei
    • 2
  • Sylvain Mouton
    • 3
  • Jean Francois Sobry
    • 1
  1. 1.ONERALille CedexFrance
  2. 2.European Commission, Joint Research CentreIspraItaly
  3. 3.ONERAMeudonFrance

Personalised recommendations