Dynamic maneuver loads calculations for a sailplane and comparison with flight test

Abstract

This work presents the results of dynamic maneuver simulations of a sailplane and the comparison with flight test data. The goal of the effort is to extend and validate an in-house toolbox used for loads analysis of free-flying flexible aircraft in the time domain. The underlying aerodynamic theories are the steady vortex lattice and the doublet lattice method with a rational function approximation for the unsteady simulations in the time domain. The structural model comprises a beam model to represent the stiffness properties and a lumped mass model, both are developed using preliminary design methods. Steady aeroelastic trim simulations are performed and used as initial condition for the time simulation of the unsteady maneuvers in which the pilot’s commands, which were recorded during flight test, are prescribed at the control surfaces. Two vertical maneuvers with elevator excitation, two rolling maneuvers with aileron excitation and three aileron sweeps are simulated. The validation focuses on the comparison of interesting quantities such as section loads, structural accelerations and the rigid body motion. Good agreement between simulation and flight test data is demonstrated for all three kinds of maneuvers, confirming the quality of the models developed by the preliminary design methods.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

References

  1. 1.

    Albano, E., Rodden, W.P.: A doublet lattice method for calculating lift distributions on oscillation surfaces in subsonic flows. In: AIAA 6th Aerospace Sciences Meeting. New York (1968)

  2. 2.

    Bisplinghoff, R., Ashley, H.: Principles of Aeroelasticity. Dover Books on Aeronautical Engineering. Dover Publications (2002). 00892 Unabridged, corrected republication of the edition published by Wiley, New York (1962)

  3. 3.

    Blair, M.: A Compilation of the Mathematics Leading to the Doublet Lattice Method. Technical Report WL-TR-92-3028, Airforce Wright Laboratory, Ohio (1992)

  4. 4.

    Brown, P.N., Byrne, G.D., Hindmarsh, A.C.: VODE: A variable-coefficient ODE solver. SIAM J. Sci. Stat. Comput. 10(5), 1038–1051 (1989). https://doi.org/10.1137/0910062

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Buttrill, C., Zeiler, T., Arbuckle, P.: Nonlinear simulation of a flexible aircraft in maneuvering flight. Am. Inst. Aeronaut. Astronaut. (1987). https://doi.org/10.2514/6.1987-2501

  6. 6.

    Claverias, S., Cerezo, J., Torralba, M., Reyes, M., Climent, H., Karpel, M.: Wake vortex encounter loads numerical simulation. In: International Forum for Aeroelasticity and Structural Dynamics, Bristol, United Kingdom (2013)

  7. 7.

    Climent, H., Lindenau, O., Claverias, S., Viana, J., Oliver, M., Benitez, L., Pfeifer, D., Jenaro-Rabadan, G.: Flight test validation of wake vortex encounter loads. In: International Forum for Aeroelasticity and Structural Dynamics, Bristol, United Kingdom (2013)

  8. 8.

    Cumnuantip, S., Kier, T., Pinho Chiozzotto, G.: Methods for the quantification of aircraft loads in DLR-Project iLOADS. In: Deutscher Luft- Und Raumfahrtkongress (2016)

  9. 9.

    DLR’s research aircraft. http://www.dlr.de/dlr/en/desktopdefault.aspx/tabid-10203/. Accessed 17 July 2017

  10. 10.

    Discus-2c DLR. http://www.dlr.de/dlr/en/desktopdefault.aspx/tabid-10203/339_read-9181/#/gallery/8791. Accessed 03 Apr 2017

  11. 11.

    Dormand, J., Prince, P.: A family of embedded Runge–Kutta formulae. J. Comput. Appl. Math. 6(1), 19–26 (1980). https://doi.org/10.1016/0771-050X(80)90013-3

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Drela, M.: XFOIL Subsonic Airfoil Development System. http://web.mit.edu/drela/Public/web/xfoil/. Accessed 08 Aug 2017

  13. 13.

    Eller, D.: On an Efficient Method for Time-Domain Computational Aeroelasticity. Dissertation, KTH Royal Institute of Technology, Stockholm (2005)

  14. 14.

    Eller, D., Ringertz, U.: Aeroelastic Simulations of a Sailplane. Tech. rep, Department of Aeronautical and Vehicle Engineering, KTH (2005)

  15. 15.

    Garbow, B.S., Hillstrom, K.E., More, J.J.: Minpack/hybrd.html. https://www.math.utah.edu/software/minpack/minpack/hybrd.html (1980). Accessed 18 July 2017

  16. 16.

    Gupta, K.K., Brenner, M.J., Voelker, L.S.: Developement of an Integrated Aeroservoelastic Analysis Program and Correlation With Test Data. Technical Paper NASA Technical Paper 3120, Dryden Flight Research Facility, Edwards, California (1991)

  17. 17.

    Handojo, V., Klimmek, T.: Böenlastanalyse der vorwärts gepfeilten ALLEGRA-Konfiguration. In: Deutscher Luft- Und Raumfahrtkongress, Rostock (2015)

  18. 18.

    Hedman, S.G.: Vortex Lattice Method for Calculation of Quasi Steady State Loadings on Thin Elastic Wings in Subsonic Flow. Tech. Rep. FFA Report 105, FFA Flygtekniska Försöksanstalten, Stockholm, Sweden (1966)

  19. 19.

    Karpel, M., Strul, E.: Minimum-state unsteady aerodynamic approximations with flexible constraints. J. Aircr. 33(6), 1190–1196 (1996). https://doi.org/10.2514/3.47074

    Article  Google Scholar 

  20. 20.

    Katz, J., Plotkin, A.: Low-Speed Aerodynamics: From Wing Theory to Panel Methods, p. 00002. McGraw-Hill, New York (1991)

    Google Scholar 

  21. 21.

    Kier, T., Looye, G.: Unifying manoeuvre and gust loads analysis models (2009)

  22. 22.

    Klimmek, T.: Parametric set-up of a structural model for FERMAT configuration for aeroelastic and loads analysis. J. Aeroelastic. Struct. Dyn. 2, 31–49 (2014). https://doi.org/10.3293/asdj.2014.27

    Google Scholar 

  23. 23.

    Klimmek, T., Ohme, P., Ciampa, Handojo, V.: Aircraft loads—an important task from pre-design to loads flight testing. In: Deutscher Luft- Und Raumfahrtkongress, Braunschweig (2016)

  24. 24.

    Kotikalpudi, A.: Body Freedom Flutter (BFF) Doublet Lattice Method (DLM). http://hdl.handle.net/11299/165566 (2014)

  25. 25.

    Kotikalpudi, A., Pfifer, H., Balas, G.J.: Unsteady aerodynamics modeling for a flexible unmanned air vehicle. In: AIAA Atmospheric Flight Mechanics Conference. American Institute of Aeronautics and Astronautics, Dallas, Texas (2015). https://doi.org/10.2514/6.2015-2854

  26. 26.

    Krüger, W., Klimmek, T., Liepelt, R., Schmidt, H., Waitz, S., Cumnuantip, S.: Design and aeroelastic assessment of a forward-swept wing aircraft. CEAS Aeronaut. J. 5(4), 419–433 (2014). https://doi.org/10.1007/s13272-014-0117-0

    Article  Google Scholar 

  27. 27.

    Krüger, W., Handojo, V., Klimmek, T.: Flight loads analysis and measurements of external stores on an atmospheric research aircraft. In: 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. American Institute of Aeronautics and Astronautics, Grapevine, Texas (2017)

  28. 28.

    Krüger, W., Klimmek, T.: Definition of a comprehensive loads process in the DLR project iLOADS. In: Deutscher Luft- und Raumfahrtkongress, Braunschweig, Deutschland (2016)

  29. 29.

    Liersch, C.M., Huber, K.C.: Conceptual design and aerodynamic analyses of a generic UCAV configuration. In: American Institute of Aeronautics and Astronautics (ed.) 32nd AIAA Applied Aerodynamics Conference. Atlanta, GA (2014). https://doi.org/10.2514/6.2014-2001

  30. 30.

    Montel, M., Thielecke, F.: Validation of a nonlinear observer implementation for empennage loads estimation. CEAS Aeronaut. J. 7(2), 299–313 (2016). https://doi.org/10.1007/s13272-016-0190-7

    Article  Google Scholar 

  31. 31.

    Nicolai, L.M., Carichner, G.E.: Fundamentals of Aircraft and Airship Design: Volume I Aircraft Design. American Institute of Aeronautics and Astronautics, Reston (2010). https://doi.org/10.2514/4.867538

    Google Scholar 

  32. 32.

    Ohme, P., Raab, C., Preisighe Viana, M.V.: Lastenmessung im Flugversuch und Entwicklung Echtzeitfähiger Simulationsmodelle. In: Deutscher Kongress Für Luft- Und Raumfahrt, Braunschweig (2016)

  33. 33.

    Palacios, R., Climent, H., Karlsson, A., Winzell, B.: Assessment of strategies for correcting linear unsteady aerodynamics using CFD or test results. In: International Forum on Aeroelasticity and Structural Dynamics (2001)

  34. 34.

    Pinho Chiozzotto, G.: Wing weight estimation in conceptual design: a method for strut-braced wings considering static aeroelastic effects. CEAS Aeronaut. J. 7(3), 499–519 (2016). https://doi.org/10.1007/s13272-016-0204-5

    Article  Google Scholar 

  35. 35.

    Powell, M.J.: A hybrid method for nonlinear equations. Numer. Methods Nonlinear Algeb. Equ. 7, 87–114 (1970)

    MathSciNet  Google Scholar 

  36. 36.

    Preisighe Viana, M.V.: Sensor calibration for calculation of loads on a flexible aircraft. In: 16th International Forum on Aeroelasticity and Structural Dynamics, Saint Petersburg, Russia (2015)

  37. 37.

    Preisighe Viana, M.V.: Multipoint Model for Flexible Aircraft Loads Monitoring in Real Time. Dissertation, TU Braunschweig, Braunschweig, Deutschland (2016)

  38. 38.

    Preisighe Viana, M.V.: Time-domain system identification of rigid-body multipoint loads model. In: AIAA Atmospheric Flight Mechanics Conference, American Institute of Aeronautics and Astronautics, Washington, DC (2016). https://doi.org/10.2514/6.2016-3706

  39. 39.

    Ramsey, H.D., Lewolt, J.G.: Design maneuver loads for an airplane with an active control system. In: 20th Structures, Structural Dynamics, and Materials Conference, American Institute of Aeronautics and Astronautics, St. Louis, USA (1979)

  40. 40.

    Reschke, C.: Integrated Flight Loads Modelling and Analysis for Flexible Transport Aircraft. Dissertation, Universität Stuttgart, Oberpfaffenhofen, Germany (2006)

  41. 41.

    Rodden, W., MacNeal, Harder, R., McLean, Bellinger, D.: MSC/Nastran Version 68 Aeroelastic Analysis User’s Guide. MSC. Software Corporation (01/03/10)

  42. 42.

    Rodden, W.P., Giesing, J.P., Kálmán, T.P.: New developments and application of the subsonic doublet-lattice method for nonplanar configurations. In: AGARD-CP-80-PT-2-Symposium on Unsteady Aerodynamics for Aeroelastic Analyses of Interfering Surfaces (Part 2) (1971)

  43. 43.

    Roger, K.L.: Airplane math modeling methods for active control design. In: T.B. Company (ed.) AGARD-CP-228 (1977)

  44. 44.

    Schlichting, H., Truckenbrodt, E.: Aerodynamik Des Flugzeuges: Aerodynamik Des Tragflügels (Teil 2). Der Flügel-Rumpf-Anordnung Und Leitwerke, zweite neubearbeitete auflage edn. Springer, Des Rumpfes (1969)

  45. 45.

    Schrenk, O.: Ein einfaches Näherungsverfahren zur Ermittlung von Auftriebsverteilungen längs der Tragflügelspannweite. Tech. rep, Aerodynamische Versuchsanstalt (AVA), Göttingen, Germany (1940)

  46. 46.

    Sinske, J., Govers, Y., Handojo, V., Krüger, W.R.: HALO Flugtest mit instrumentierten Aussenlasten fuer Aeroelastik- und Lastmessungen im DLR Projekt iLOADS. In: Deutscher Luft- Und Raumfahrtkongress, Braunschweig (2016)

  47. 47.

    Skopinski, T.H., Aiken, W.S., Huston, W.B.: Calibration of Strain-Gage Installations in Aircraft Structures for the Measurement of Flight Loads. Technical Report NACA-TR-1178, National Advisory Committee for Aeronautics. Langley Aeronautical Lab, Langley Field, VA (1954)

  48. 48.

    Stauffer, W.A., Hoblit, F.M.: Dynamic gust, landing, and taxi loads determination in the design of the L-1011. J. Aircr. 10(8), 459–467 (1973). https://doi.org/10.2514/3.44383

    Article  Google Scholar 

  49. 49.

    Stauffer, W., Lewolt, J., Hoblit, F.: Application of advanced methods to the determination of design loads of the Lockheed L-1011 TriStar. Am. Inst. Aeronaut. Astronaut. (1972). https://doi.org/10.2514/6.1972-775

  50. 50.

    The Scipy community: Scipy.integrate.ode. http://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.html#scipy.integrate.ode. Accessed 18 July 2017

  51. 51.

    The Scipy community: Scipy.optimize.fsolve. http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fsolve.html. Accessed 18 July 2017

  52. 52.

    Voß, A., Klimmek, T.: Design and sizing of a parametric structural model for a UCAV configuration for loads and aeroelastic analysis. CEAS Aeronaut. J. 8(1), 67–77 (2017). https://doi.org/10.1007/s13272-016-0223-2

    Article  Google Scholar 

  53. 53.

    Voß, A., Klimmek, T.: Maneuver loads calculation with enhanced aerodynamics for a UCAV configuration. In: AIAA Modeling and Simulation Technologies Conference, American Institute of Aeronautics and Astronautics, Washington, DC (2016). https://doi.org/10.2514/6.2016-3838

  54. 54.

    Voß, A., Pinho Chiozzotto, G., Ohme, P.: Dynamic maneuver loads calculation for a sailplane and comparison with flight test. In: IFASD 2017-17th International Forum on Aeroelasticity and Structural Dynamics, Como, Italy (2017)

  55. 55.

    Waszak, M.R., Schmidt, D.K.: Flight dynamics of aeroelastic vehicles. J. Aircr. 25(6), 563–571 (1988). https://doi.org/10.2514/3.45623

    Article  Google Scholar 

  56. 56.

    Waszak, M., Buttrill, C., Schmidt, D.: Modeling and Model Simplification of Aeroelastic Vehicles: An Overview. Tech. Rep. NASA Technical Memorandum 107691, NASA Langley Research Center (1992)

  57. 57.

    ZONA Technology Inc.: ZAERO Theoretical Manual, vol. Version 9.0. Scottsdale, Arizona (2014)

Download references

Acknowledgements

The authors would like to thank their colleague Gabriel P. Chiozzotto for providing the aeroelastic models and for valuable discussions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Arne Voß.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Voß, A., Ohme, P. Dynamic maneuver loads calculations for a sailplane and comparison with flight test. CEAS Aeronaut J 9, 445–460 (2018). https://doi.org/10.1007/s13272-018-0300-9

Download citation

Keywords

  • Dynamic maneuver loads
  • Flight test
  • Sailplane
  • Preliminary design
  • Aeroelasticity
  • Structural dynamics