Skip to main content

Quasi-steady doublet-lattice correction for aerodynamic gust response prediction in attached and separated transonic flow

Abstract

A quasi-steady doublet-lattice correction method is used to predict aerodynamic gust responses of two different configurations: a swept wing, the so-called Aerostabil wing, and a transport aircraft configuration, the NASA Common Research Model. The results of the correction method are compared to uncorrected doublet-lattice results, and to results obtained from a nonlinear computational fluid dynamics solver, the DLR TAU-Code. The correction method agrees well with time-marching results obtained by TAU in the limit of dynamically linear gust amplitudes and improves with gust length. In separated transonic flow, an oscillation of the aerodynamic gust response can be computed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

References

  1. 1.

    Albano, E., Rodden, W.P.: A doublet-lattice method for calculating lift distributions on oscillating surfaces in subsonic flows. AIAA J. 7(2), 279–285 (1969). https://doi.org/10.2514/6.1968-73

    Article  MATH  Google Scholar 

  2. 2.

    Blair, M.: A compilation of the mathematics leading to the doublet lattice method, Air Force Wright Laboratory, Dayton, OH, WL-TR-92-3028, pp 1–140 (1992)

  3. 3.

    Hasselbring, J., Jenaro, G.: Use of linearized CFD for unsteady aerodynamics for gust loads. In: International Forum on Aeroelasticity and Structural Dynamics (2013). IFASD-2013-18C

  4. 4.

    Brink-Spalink, J., Bruns, J.M.: Correction of unsteady aerodynamic influence coefficients using experimental or CFD data. In: International Forum on Aeroelasticity and Structural Dynamics (2001). IFASD-2001-034

  5. 5.

    Küssner, H.G.: Zusammenfassender Bericht über den instationären Auftrieb von Flügeln. In: Luftfahrtforschung, Band 13, vol. 12 (1936)

  6. 6.

    Sears, W.R.: Some aspects of non-stationary airfoil theory and its practical application. J. Aeronaut. Sci. (Inst. Aeronaut. Sci.) 8(3), 104–108 (1941)

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Parameswaran, V., Baeder, J.D.: Indicial aerodynamics in compressible flow—direct computational fluid dynamic calculations. J. Aircr. 34(1), 131–133 (1997). https://doi.org/10.2514/2.2146

    Article  Google Scholar 

  8. 8.

    Singh, R., Baeder, J.D.: The direct calculation of indicial lift response of a wing using computational fluid dynamics. In: AIAA Applied Aerodynamics Conference (1996)

  9. 9.

    Heinrich, R.: Simulation of interaction of aircraft and gust using the TAU-code. In: Dillmann, A., Heller, G., Krämer, E., Kreplin, H.P., Nitsche, W., Rist, U. (eds.) New Results in Numerical and Experimental Fluid Mechanics IX, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 124, pp. 503–511. Springer International Publishing, Switzerland (2014)

    Chapter  Google Scholar 

  10. 10.

    Huvelin, F., Girodroux-Lavigne, P., Blondeau, C.: High fidelity numerical simulations for gust response analysis. In: International Forum on Aeroelasticity and Structural Dynamics (2013). IFASD-2013-24B

  11. 11.

    Zaide, A., Raveh, D.: Numerical simulation and reduced-order modeling of airfoil gust response. AIAA J. 44(8), 1826–1834 (2006). https://doi.org/10.2514/1.16995

    Article  Google Scholar 

  12. 12.

    Khodaparast, H., Cooper, J.E., Cavagna, L., Ricci, S., Riccobene, L.: Fast prediction of worst case gust loads. In: International Forum on Aeroelasticity and Structural Dynamics (2013). IFASD-2013-30A

  13. 13.

    Raveh, D.: CFD-based models of aerodynamic gust response. J. Aircr. 44(3), 888–897 (2007). https://doi.org/10.2514/1.25498

    Article  Google Scholar 

  14. 14.

    Ronch, A.D., Badcock, K.J.: Model reduction for linear and nonlinear gust loads analysis. In: 54th Structures, Structural Dynamics, and Materials Conference. American Institute of Aeronautics and Astronautics (2013). https://doi.org/10.2514/6.2013-1492

  15. 15.

    Timme, S., Badcock, K.J., Da Ronch, A.: Linear reduced order modelling for gust response analysis using the DLR-TAU code. In: International Forum on Aeroelasticity and Structural Dynamics (2013). IFASD-2013-36A

  16. 16.

    Wales, C., Gaitonde, A., Jones, D.: Reduced order modelling for the gust response of the FFAST wing. In: International Forum on Aeroelasticity and Structural Dynamics (2013). IFASD-2013-24D

  17. 17.

    Palacios, R., Climent, H., Karlsson, A., Winzell, B.: Assessment of strategies for correcting linear unsteady aerodynamics using CFD or experimental results. In: Haase, W., Selmin, V., Winzell, B. (eds.) Progress in computational flow–structure interaction, pp. 209–224. Springer, Berlin (2003)

    Google Scholar 

  18. 18.

    Silva, R.G.A., Mello, O.A.F., Azevedo, J.L.F., Chen, P.C., Liu, D.D.: Investigation on transonic correction methods for unsteady aerodynamics and aeroelastic analyses. J. Aircr. 45(6), 1890–1903 (2008). https://doi.org/10.2514/1.33406

    Article  Google Scholar 

  19. 19.

    Thormann, R., Dimitrov, D.: Correction of aerodynamic influence matrices for transonic flow. CEAS Aeronaut. J. 5(4), 435–446 (2014). https://doi.org/10.1007/s13272-014-0114-3

    Article  Google Scholar 

  20. 20.

    Banavara, N.K., Dimitrov, D.: Prediction of transonic flutter behavior of a supercritical airfoil using reduced order methods. In: Dillmann, A., Heller, G., Krämer, E., Kreplin, H.P., Nitsche W., Rist U. (eds.) New Results in Numerical and Experimental Fluid Mechanics IX, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 124, pp. 365–373. Springer, Cham (2014)

    Chapter  Google Scholar 

  21. 21.

    Moreno, R., von Knoblauch, F., Narisetti, R., Taylor, P.F.: A modification to the enhanced correction factor technique to correlate with experimental data. In: AIAA SciTech. American Institute of Aeronautics and Astronautics (2015). https://doi.org/10.2514/6.2015-1421

  22. 22.

    Valente, C., Wales, C., Jones, D., Gaitonde, A., Cooper, J.E., Lemmens, Y.: A Doublet-Lattice method correction approach for high fidelity gust loads analysis. In: AIAA SciTech Forum. American Institute of Aeronautics and Astronautics (2017). https://doi.org/10.2514/6.2017-0632

  23. 23.

    Quero-Martin, D., Krüger, W., Jenaro, G.: A reduced-order model for dynamic loads prediction including aerodynamic nonlinearities. In: International Forum on Aeroelasticity and Structural Dynamics (2015). IFASD-2015-141

  24. 24.

    Dietz, G., Schewe, G., Kiessling, F., Sinapius, M.: Limit-cycle-oscillation experiments at a transport aircraft wing model. In: International Forum on Aeroelasticity and Structural Dynamics (2003). IFASD-GE-16

  25. 25.

    Vassberg, J., Dehaan, M., Rivers, M., Wahls, R.: Development of a common research model for applied CFD validation studies. In: Guidance, Navigation, and Control and Co-located Conferences. American Institute of Aeronautics and Astronautics (2008). https://doi.org/10.2514/6.2008-6919

  26. 26.

    Gerhold, T., Galle, M., Friedrich, O., Evans, J.: Calculation of complex three-dimensional configurations employing the DLR-TAU-code. In: 35th Aerospace Sciences Meeting and Exhibit (1997). https://doi.org/10.2514/6.1997-167

  27. 27.

    Schwamborn, D., Gerhold, T., Heinrich, R.: The DLR TAU-code: Recent applications in research and industry. In: European Conference on Computational Fluid Dynamics (ECCOMAS) (2006)

  28. 28.

    Spalart, P., Allmaras, S.: A one-equation turbulence model for aerodynamic flows. In: 30th Aerospace Sciences Meeting and Exhibit (1992). https://doi.org/10.2514/6.1992-439. AIAA-92-0439

  29. 29.

    Jameson, A., Schmidt, W., Turkel, E.: Numerical solutions of the euler equations by the finite volume methods using runge kutta time stepping schemes. In: 14th Fluid and Plasma Dynamics Conference (1981). https://doi.org/10.2514/6.1981-1259. AIAA 81-1259

  30. 30.

    Jameson, A.: Time dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings. In: 10th Computational Fluid Dynamics Conference (1991). https://doi.org/10.2514/6.1991-1596. AlAA 91-1596

  31. 31.

    Kaiser, C., Thormann, R., Dimitrov, D., Nitzsche, J.: Time-Linearized Analysis of Motion-induced and Gust-induced Airloads with the DLR TAU Code. In: Deutscher Luft- und Raumfahrtkongress (2015)

  32. 32.

    European Aviation Safety Agency (EASA): Certification specifications and acceptable means of compliance for large aeroplanes CS-25, amendment 12. Tech. rep., European Aviation Safety Agency (EASA) (2012)

  33. 33.

    Rodden, W.P., Taylor, P.F., McIntosh, S.C., Baker, M.L.: Further convergence studies of the enhanced doublet-lattice method. J. Aircr. 36(4), 682–688 (1999). https://doi.org/10.2514/2.2511

    Article  Google Scholar 

  34. 34.

    Nitzsche, J.: A numerical study on aerodynamic resonance in transonic separated flow. In: International Forum on Aeroelasticity and Structural Dynamics (2009). IFASD-2009-126

  35. 35.

    Thormann, R., Nitzsche, J., Widhalm, M.: Time-Linearized simulation of unsteady transonic flows with Shock-Induced separation. In: European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS) (2012)

  36. 36.

    4th AIAA Drag Prediction Workshop (2017). ftp://cmb24.larc.nasa.gov/outgoing/DPW4/DLR/SolarGrids/

  37. 37.

    Klimmek, T.: Parametric set-up of a structural model for FERMAT configuration for aeroelastic and loads analysis. J. Aeroelast. Struct. Dyn. 3(2), 31–49 (2014)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was funded by DLR programmatic research in the project ‘ALLEGRA’, as well as by the German Federal Ministry of Economics and Technology (BMWi) under Grant number 20A1102A (project ‘AeroStruct’). Moreover, the authors would like to thank Chris Wales for the support with the CFD mesh of the CRM configuration.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Diliana Friedewald.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Friedewald, D., Thormann, R., Kaiser, C. et al. Quasi-steady doublet-lattice correction for aerodynamic gust response prediction in attached and separated transonic flow. CEAS Aeronaut J 9, 53–66 (2018). https://doi.org/10.1007/s13272-017-0273-0

Download citation

Keywords

  • Gust
  • DLM
  • AIC correction
  • Transonic flow