Skip to main content

Boundary-layer transition measurements on Mach-scaled helicopter rotor blades in climb

Abstract

In this work, laminar-turbulent boundary-layer transition is investigated on the suction side of Mach-scaled helicopter rotor blades in climb. The phenomenon is assessed by means of temperature-sensitive paint (TSP). Results are compared to a data sample acquired by infrared (IR) thermography and accompanied by integral thrust- and local surface pressure measurements at two radial blade sections. Spatially, high-resolved data allow for precise detection of boundary-layer transition along the outer 60% of the blade span. Results obtained via TSP and IR show remarkable agreement with minor deviations due to different surface qualities of the respective blades tested. TSP data are obtained at various collective pitch angles and three different rotating speeds corresponding to chord Reynolds and Mach numbers based on blade tip speed of \(Re_{\rm tip} = 4.8 - 9.3\times 10^5\) and \(M_{\rm tip} = 0.29 - 0.57\), respectively. The transition position is detected with an accuracy of better than 1% chord and the findings show overall coherence as blade loading and tip chord Reynolds number are varied. Experimental findings are shown to be consistent with two-dimensional simulations using the \(e^N\)-envelope method for transition prediction. Based on quantitative agreement between measured and calculated surface pressures, a comparison of the corresponding transition results suggests a critical amplification factor of \(N_{\rm cr.} = 5.5\) best suited for transition prediction in the rotating test facility of the DLR Göttingen.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. Heister, C.C.: Methodik zur näherungsweisen Vorhersage des laminar-turbulenten Umschlags an Hubschrauberrotoren. Ph.D. thesis, Universität Stuttgart (2016). doi:10.18419/opus-8893

  2. Egolf, T.A., Hariharan, N., Narducci, R., Reed, E.: AIAA standardized hover simulation: hover performance prediction status and outstanding issues. In: 55th AIAA Aerospace Sciences Meeting, AIAA 2017-1429. Grapevine, Texas (2017). doi:10.2514/6.2017-1429

  3. Schubauer, G.B., Skramstad, H.K.: Laminar boundary-layer oscillations and stability of laminar flow. J. Aeronaut. Sci. 14(2), 69–78 (1947). doi:10.2514/8.1267

    Article  Google Scholar 

  4. Bass, R.M.: Small scale wind tunnel testing of model propellers. In: 24th Aerospace Sciences Meeting. Reno, Nevada (1986). doi:10.2514/6.1986-392

  5. McCroskey, W.J.: Measurements of boundary layer transition, separation and streamline direction on rotating blades. Tech. Rep. TN D-6321, NASA (1971)

  6. Raffel, M., De Gregorio, F., de Groot, K., Schneider, O., Sheng, W., Gibertini, G., Seraudie, A.: On the generation of a helicopter aerodynamic database. Aeronaut. J. 115(1164), 103–112 (2011). doi:10.1017/S0001924000005492

    Article  Google Scholar 

  7. Tanner, W.H., Yaggy, P.F.: Experimental boundary layer study on hovering rotors. J. Am. Helicopter Soc. 11(13), 22–37 (1966). doi:10.4050/JAHS.11.22

    Article  Google Scholar 

  8. Rohardt, C.H.: Flow visualization on a helicopter rotor in hover using acenaphthene. In: 13th European Rotorcraft Forum. Arles (1987)

  9. Velkoff, H.R., Blaser, D.A., Jones, K.M.: Boundary-layer discontinuity on a helicopter rotor blade in hovering. J. Aircr. 8(2), 101–107 (1971). doi:10.2514/3.44236

    Article  Google Scholar 

  10. Wadcock, A.J., Yamauchi, G.K., Driver, D.M.: Skin friction measurements on a hovering full-scale tilt rotor. In: AHS Technical Specialists’ Meeting for Rotorcraft Acoustics and Aerodynamics. Williamsburg, Virginia (1999)

  11. Schülein, E.: Optical method for skin-friction measurements on fast-rotating blades. Exp. Fluids 55(2), 1672 (2014). doi:10.1007/s00348-014-1672-1

    Article  Google Scholar 

  12. Heineck, J.T., Schülein, E., Raffel, M.: Boundary layer transition detection on a rotor blade using rotating mirror thermography. In: Fifth Decennial AHS Aeromechanics Specialists’ Conference. San Francisco, California (2014)

  13. Richter, K., Schülein, E.: Boundary-layer transition measurements on hovering helicopter rotors by infrared thermography. Exp. Fluids 55(7), 1755 (2014). doi:10.1007/s00348-014-1755-z

    Article  Google Scholar 

  14. Richter, K., Schülein, E., Ewers, B., Raddatz, J., Klein, A.: Boundary layer transition characteristics of a full-scale helicopter rotor in hover. In: AHS 72nd Annual Forum. AHS Int., West Palm Beach, Florida (2016)

  15. Overmeyer, A.D., Martin, P.B.: Measured boundary layer transition and rotor hover performance at model scale. In: 55th AIAA Aerospace Sciences Meeting, AIAA-2017-1872. Grapevine, Texas (2017). doi:10.2514/6.2017-1872

  16. Yorita, D., Asai, K., Klein, C., Henne, U., Schaber, S.: Transition detection on rotating propeller blades by means of temperature sensitive paint. In: 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, AIAA 2012-1187. Grapevine, Texas (2012). doi:10.2514/6.2012-1187

  17. Lang, W., Gardner, A.D., Mariappan, S., Klein, C., Raffel, M.: Boundary-layer transition on a rotor blade measured by temperature-sensitive paint, thermal imaging and image derotation. Exp. Fluids 56(6), 118 (2015). doi:10.1007/s00348-015-1988-5

    Article  Google Scholar 

  18. Ingen, J.L.v.: A suggested semi-empirical method for the calculation of the boundary layer transition region. Tech. Rep. VTH-74, TU Delft, Delft (1956)

  19. Smith, A.M.O., Gamberoni, N.: Transition, pressure gradient and stability theory. Technical report ES-26388, Douglas Aircraft Company (1956)

  20. Schwermer, T., Richter, K., Raffel, M.: Development of a rotor test facility for the investigation of dynamic stall. In: Dillmann, A., Heller, G., Krämer, E., Wagner, C., Breitsamter, C. (eds.) New Results in Numerical and Experimental Fluid Mechanics X. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, pp. 663–673. Springer, Cham (2016). doi:10.1007/978-3-319-27279-5_58

    Chapter  Google Scholar 

  21. Schwermer, T., Gardner, A.D., Raffel, M.: Dynamic stall experiments on a rotor with high cyclic setting in axial inflow. In: AHS International’s 73rd Annual Forum & Technology Display. AHS Int., Fort Worth, Texas (2017)

  22. Vuillet, A., Allongue, M., Philippe, J.J., Desopper, A.: Performance and aerodynamic development of the super puma mk II main rotor with new SPP 8 blade tip design. In: 15th European Rotorcraft Forum. DGLR, Amsterdam (1989)

  23. Liu, T., Sullivan, J.P.: Pressure and Temperature Sensitive Paints. Springer-Verlag, Berlin (2005)

    Google Scholar 

  24. Fey, U., Egami, Y.: Transition detection by temperature-sensitive paint, chap. 7.4. In: Tropea, C., Yarin, A., Foss, JF. (eds.) Springer handbook of experimental fluid mechanics, pp. 537–552. Springer, Berlin (2007)

  25. Bickel, G., Häusler, G., Maul, M.: Triangulation with expanded range of depth. Opt. Eng. 24(6), 975–977 (1985). doi:10.1117/12.7973610

    Article  Google Scholar 

  26. Klein, C., Engler, R.H., Henne, U., Sachs, W.E.: Application of pressure-sensitive paint for determination of the pressure field and calculation of the forces and moments of models in a wind tunnel. Exp. Fluids 39(2), 475–483 (2005). doi:10.1007/s00348-005-1010-8

    Article  Google Scholar 

  27. Schlichting, H., Gersten, K.: Boundary-Layer Theory, 9th edn. Springer-Verlag, Berlin (2017)

    Book  MATH  Google Scholar 

  28. Raffel, M., Merz, C.B., Schwermer, T., Richter, K.: Differential infrared thermography for boundary layer transition detection on pitching rotor blade models. Exp. Fluids 56(2), 30 (2015). doi:10.1007/s00348-015-1905-y

    Article  Google Scholar 

  29. Carpenter, A., Saric, W., Reed, H.: Laminar flow control on a swept wing with distributed roughness. In: 26th AIAA Applied Aerodynamics Conference, AIAA 2008-7335. Honolulu, Hawaii (2008). doi:10.2514/6.2008-7335

  30. Ashill, P., Betts, C., Gaudet, I.: A wind tunnel study of transition flows on a swept panel wing at high subsonic speeds. In: CEAS 2nd European Forum on Laminar Flow Technology, pp. 10.1–10.17. AAAF, Paris (1996)

  31. Stanfield, J.H., Betts, C.J.: Transition detection technique in use in the DRA Bedford wind tunnels. In: Proceedings of the 7th International Symposium on Flow Visualization. Seattle, Washington (1995)

  32. Kreplin, H.P., Höhler, G.: Application of the surface hot film technique for laminar flow investigations. In: First European Forum on Laminar Flow Technology, 92–01-017, pp. 123–131. DGLR, Bonn (1992)

  33. Schülein, E.: Experimental investigation of laminar flow control on a supersonic swept wing by suction. In: 4th Flow Control Conference, AIAA 2008-4208. Seattle, Washington (2008). doi:10.2514/6.2008-4208

  34. Granville, P.S.: The calculation of viscous drag of bodies of revolution. Technical report 849, Navy Department. The David W. Taylor Model Basin, Washington D.C. (1953)

  35. Gardner, A.D., Richter, K.: Boundary layer transition determination for periodic and static flows using phase-averaged pressure data. Exp. Fluids 56(6), 119 (2015). doi:10.1007/s00348-015-1992-9

    Article  Google Scholar 

  36. Wolf, C.C., Merz, C.B., Richter, K., Raffel, M.: Tip-vortex dynamics of a pitching rotor blade-tip model. AIAA J. 54(10), 2947–2960 (2016). doi:10.2514/1.J054656

    Article  Google Scholar 

  37. Mahalingam, R., Wong, O., Komerath, N.: Experiments on the origin of tip-vortices. In: 38th Aerospace Sciences Meeting and Exhibit, AIAA 2000-0278. Reno, Nevada (2000). doi:10.2514/6.2000-278

  38. Drela, M.: Newton solution of coupled viscous/inviscid multielement airfoil flows. In: 21st Fluid Dynamics, Plasma Dynamics and Lasers Conference. Seattle, Washington (1990). doi:10.2514/6.1990-1470

  39. Smith, M.J., Wong, T.C., Potsdam, M., Baeder, J., Sujee, P.: Evaluation of CFD to determine two-dimensional airfoil characteristics for rotorcraft applications. In: AHS 60th Annual Forum. AHS Int., Baltimore, Maryland (2004)

  40. Drela, M., Giles, M.B.: Viscous-inviscid analysis of transonic and low reynolds number airfoils. AIAA J. 25(10), 1347–1355 (1987). doi:10.2514/3.9789

    Article  MATH  Google Scholar 

  41. Popov, A.V., Botez, R.M., Labib, M.: Transition point detection from the surface pressure distribution for controller design. J. Aircr. 45(1), 23–28 (2008). doi:10.2514/1.31488

    Article  Google Scholar 

  42. Arnal, D.: Laminar-turbulent transition problems in supersonic and hypersonic flows. Technical report, AGARD-R-761, North Atlantic Treaty Organization Advisory Group for Aerospace Research and Development (1989)

  43. Obara, C.J., Holmes, B.J.: Flight-measured laminar boundary-layer transition phenomena including stability theory analysis. Technical report, TN D-2417, NASA, Hampton, Virginia (1985)

Download references

Acknowledgements

The authors would like to thank T. Schwermer, U. Henne, M. Krebs, J. Braukmann, and M. Hilfer (all DLR Göttingen) for their productive support setting up the test, for their help conducting the experiment as well as for support handling the data. The contributions of V. Ondrus (Universität Hohenheim) for preparation of the temperature-sensitive paint as well as the fruitful discussions with S. Schaber (Airbus) on the results are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armin Weiss.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Weiss, A., Gardner, A.D., Klein, C. et al. Boundary-layer transition measurements on Mach-scaled helicopter rotor blades in climb. CEAS Aeronaut J 8, 613–623 (2017). https://doi.org/10.1007/s13272-017-0263-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13272-017-0263-2

Keywords

  • Boundary-layer transition
  • Helicopter rotor blades
  • Temperature-sensitive paint
  • Infrared thermography
  • \(e^N\)-Method