CEAS Aeronautical Journal

, Volume 9, Issue 2, pp 319–338 | Cite as

A numerical approach for assessing slotted wall interference using the CRM model at ETW

  • I. A. Kursakov
  • A. R. GorbushinEmail author
  • S. M. Bosnyakov
  • S. A. Glazkov
  • A. V. Lysenkov
  • S. V. Matyash
  • A. V. Semenov
  • J. Quest
Original Paper


This paper is devoted to the assessment of wall interference in the slotted wall test section of the European Transonic Windtunnel (ETW) over a wide range of Reynolds numbers. The experimental part of the investigation was performed in February 2014 by testing the NASA Common Research Model mounted on a fin-sting support. These tests were carried out within the scope of the ESWIRP project funded by the European Commission in the 7th framework program. The numerical research was based on the Electronic WindTunnel (EWT-TsAGI) software with a cryogenic solver. The assessed Mach number influence on the wall signatures revealed a very similar effect to applying the classical Prandtl–Glauert rule over the investigated Mach number range. Practically, no Reynolds number effects on the wall pressure distributions generated by the model and its support system could be identified over the wide range of Re numbers investigated. The first attempt of the EWT-TsAGI code application for a simulation of ETW tests featuring the model in the slotted wall tunnel showed a fair coincidence of the pressure coefficient distribution on test section walls in the model region, on the wing-root sections and the drag polar at moderate lift coefficient values.


CFD NASA CRM Cryogenic test conditions ETW ESWIRP Wall interference Slotted wall 

List of symbols


Wing span


Boeing Transonic Wind Tunnel


Mean aerodynamic chord


Drag coefficient

CDV = CD − CL2/π/λ

Profile drag coefficient


Council of European Aerospace Societies


Computational fluid dynamics


Lift coefficient


Pressure coefficient


NASA Common Research Model


German Aerospace Center


Young’s modulus


European Transonic Wind Tunnel


European strategic wind tunnels improved research potential—so-called targeted approach of the Integrating Activities of the FP7 Capacities Work Program


Horizontal tail plane of the model


Electronic Wind Tunnel, computer code


Institute of Thermomechanics of the Academy of Sciences of the Czech Republic


Japan Aerospace Exploration Agency


Mach number


National Aeronautics and Space Administration


National Transonic Facility (NASA)


The French aeronautics, space and defense research lab

P, Pt

Total pressure


Pilot European Transonic Windtunnel


Dynamic pressure


Coefficient in boundary condition


Reynolds number


Wing reference area


Stereo pattern tracking (ETW system for deformation measurements)

Ttot, Tt

Total temperature


Time resolved particle image velocimetry


Central Aerohydrodynamic Institute


Perturbed longitudinal velocity component


University of Cambridge


von Karman Institute for Fluid Dynamics, Belgium


Aerospace research and test establishment, Czech Republic


Perturbed normal velocity component

x, y, z

Coordinates (starting from test section inlet, centreline)


Model angle of attack (°)


Wing aspect ratio


Dimensionless (y/b) span-wise pressure orifices location


  1. 1.
    Hackett, J.E., Wilsden, D.J., Lilley, D.E.: Estimation of tunnel blockage from wall pressure signatures—a review and data correlation. NASA CR 152241 (1979)Google Scholar
  2. 2.
    Ulbrich, N.: The real-time wall interference correction system of the NASA Ames 12-foot pressure wind tunnel. NASA CR 208537 (1998)Google Scholar
  3. 3.
    Ulbrich, N., Boone, A.R.: Determination of the wall boundary condition of the NASA Ames 11ft Transonic Wind Tunnel. AIAA Paper 2001-1112Google Scholar
  4. 4.
    Iyer, V., Kuhl, D.D., Walker, E.L.: Wall interference study of the NTF slotted tunnel using bodies of revolution wall signature data. AIAA Paper 2004-2306Google Scholar
  5. 5.
    Walker, E.L.: Validation of blockage interference corrections in the National Transonic Facility. AIAA Paper 2007-0750Google Scholar
  6. 6.
    Iyer, V., Kuhl, D.D., Walker, E.L.: Improvements to wall corrections at the NASA langley 14×22-Ft subsonic tunnel. AIAA Paper 2003-3950Google Scholar
  7. 7.
    Iyer, V.: A wall correction program based on classical methods for the NTF (solid wall or slotted wall) and the 14×22-ft subsonic tunnel at NASA LaRC. NASA CR-2004-213261Google Scholar
  8. 8.
    Ulbrich, N., Boone, A.R.: Direct validation of the wall interference correction system of the Ames 11-foot Transonic Wind Tunnel. NASA/TM-2003-212268 (2003)Google Scholar
  9. 9.
    Rivers, M.B., Dittberner, A.: Experimental investigations of the NASA CRM in the NASA Langley NTF facility and NASA Ames 11-ft Transonic Wind Tunnel. AIAA Paper 2011-1126Google Scholar
  10. 10.
    Rivers, M.B., Quest, J., Rudnik R.: Comparison of the NASA CRM ETW tunnel test data to NASA test data. AIAA Paper 2015-1093Google Scholar
  11. 11.
    Ashill, P., Hackett, J.E., Mokry, M., Steinle, F.: Boundary measurements methods. AGARD AG-336, Paper 4 (1998)Google Scholar
  12. 12.
    Quest, J.: Tunnel corrections in ETW. Technical memorandum ETW/TM/99024, March 1999; ETWGoogle Scholar
  13. 13.
    Labrujere, Th.E.; Maarsingh, R.A.; Smith, J.: Evaluation of measured-boundary-condition methods for 3D subsonic wall interference. NLR Technical Report TR 88072 U, 1988Google Scholar
  14. 14.
    Wubben, F., Takara, E.: Wind tunnel model support and wall interference corrections in DNW-HST—ensuring high data quality standards. CEAS 2015, Paper 102Google Scholar
  15. 15.
    Krynytzky, A.J.: Parametric model size study of wall interference in the BTWT Using TRANAIR. AIAA Paper 2004-2310Google Scholar
  16. 16.
    Maseland, J.E.J., Laban, M., van der Ven H., Kooi, J.W.: Development of CFD-based interference models for the DNW-HST Transonic Wind Tunnel. AIAA Paper 2006-3639Google Scholar
  17. 17.
    Krynytzky, A.J., Johnsen, K.M., Sommerfield, D.M.: Uncertainty evaluation of wall interference in a large Transonic Wind Tunnel. AIAA Paper 2010-4341Google Scholar
  18. 18.
    Krynytzky, A.J., Fleming, M., Sommerfield, D.M., Li, P.: Computational modeling of a slotted wall test section. AIAA Paper 2012-2863Google Scholar
  19. 19.
    Glazkov, S.A., Gorbushin, A.R., Ivanov, A.I., Semenov, A.V., Vlasenko, V.V., Quest, J.: Numerical and experimental investigations of slot flow with respect to wind tunnel wall interference assessment. In: AIAA Paper 2004-2308, 24th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, Portland, Oregon, 28 June (2004)Google Scholar
  20. 20.
    Lutz, Th., Gansel, P.P., Godard, J.L., Gorbushin, A.R., Konrath, R., Quest, J., Rivers, S.M.: Going for experimental and numerical unsteady wake analyses combined with wall interference assessment by using the NASA CRM model in ETW. In: AIAA Paper 2013-0871, 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Texas, Grapevine, 07–10 January (2013)Google Scholar
  21. 21.
    Vassberg, J.C., DeHaan, M.A., Rivers, S.M., Wahls, R.A.: Development of a common research model for applied CFD validation studies. In: AIAA Paper 2008-6919 (2008)Google Scholar
  22. 22.
    Vassberg, J.C., Tinoco, E.N., Mani, M., Rider, B., Zickuhr, T., Levy, D.W., Broderson, O.P., Eisfeld, B., Crippa, S., Wahls, R.A., Morrison, J.H., Mavriplis, D.J., Murayama, M.: Summary of the fourth AIAA CFD drag prediction workshop. In: AIAA Paper 2010-4547, 8th AIAA Applied Aerodynamics Conference, Chicago, IL, 28 Jun–1 Jul (2010)Google Scholar
  23. 23.
    Neyland, VYa., Bosnyakov, S.M., Glazkov, S.A., Ivanov, A.I., Matyash, S.V., Mikhailov, S.V., Vlasenko, V.V.: Conception of Electronic Wind Tunnel and first results of its implementation. Prog. Aerosp. Sci. 37(2), 121–145 (2001)CrossRefGoogle Scholar
  24. 24.
    Bosnyakov, S., Kursakov, I., Lysenkov, A., Matyash, S., Mikhailov, S., Vlasenko, V., Quest, J.: Computational tools for supporting the testing of civil aircraft configurations in wind tunnels. Prog. Aerosp. Sci. 44(2), 67–120 (2008)CrossRefGoogle Scholar
  25. 25.
    Kazhan, E.V.: Stability improvement of Godunov–Kolgan–Rodionov TVD scheme by a local implicit smoother. TsAGI Sci. J. 43(6), 787–812 (2012). (ISSN 1948-2590) CrossRefGoogle Scholar
  26. 26.
    Jacobsen, R.T.: The thermodynamic properties of nitrogen from 65 to 2000 K with pressure to 1000 atm. Ph.D. Thesis. Washington State University. NASA CR-128526 (1972)Google Scholar
  27. 27.
    Roache, P.J.: Verification and Validation in Computational Science and Engineering. Hermosa Publishers, Albuquerque (1998)Google Scholar
  28. 28.
    Ivanov, MYa., Krupa, V.G., Nigmatullin, R.Z.: Implicit scheme of S. K. Godunov of increased accuracy for numerical integration of Euler equations. Zhur. vych. I Mat. i Mat. Fiz. 29(6), 888–901 (1989)Google Scholar
  29. 29.
    Bosnyakov, S.M., Chevagin, A.F., Vlasenko, V.V.: TsAGI’s experience in numerical simulation of flow in cryogenic wind tunnel. AIP Conf. Proc. 1770, 020007 (2016). doi: 10.1063/1.4963930 CrossRefGoogle Scholar
  30. 30.
    Pindzola, M., Lo, C.F.: Boundary interference at subsonic speeds in wind tunnels with ventilated walls. AEDC TR-69-47 (1969)Google Scholar
  31. 31.
    Velichko, S.A., Lifshits, YuB, Neyland, V.M., Solntsev, I.A.: Correction of the influence of Transonic Wind Tunnel walls. Comput. Math. Math. Phys. 36(12), 80–90 (1996)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Glazkov, S.A., Gorbushin, A.R., Ivanov, A.I., Semenov, A.V.: Recent experience in improving the accuracy of wall interference corrections in TsAGI T-128 wind tunnel. Prog. Aerosp. Sci. 37(3), 263–298 (2001)CrossRefGoogle Scholar

Copyright information

© Deutsches Zentrum für Luft- und Raumfahrt e.V. 2017

Authors and Affiliations

  1. 1.Central Aerohydrodynamic InstituteZhukovskyRussia
  2. 2.European Transonic Windtunnel GmbHCologneGermany

Personalised recommendations