Skip to main content
Log in

Component-wise vibration analysis of stiffened plates accounting for stiffener modes

  • Original Paper
  • Published:
CEAS Aeronautical Journal Aims and scope Submit manuscript

Abstract

This work has the aims to assess and compare the behavior of different finite element models in a free-vibration analysis of reinforced structures. The effects of the aspect ratio and cross-sectional shape of the stringers have been analyzed using both classical and refined FE. One- and two-dimensional classical finite element models, as well as refined one-dimensional elements, derived using the Carrera Unified Formulation, have been considered in an analysis of reinforced structures. The accuracy and efficiency of these models have been investigated. A three-dimensional model has been used as a reference solution. Three different modeling approaches have been considered in the present work. Two approaches are based on classical models provided by commercial tools: the first uses two-dimensional elements for both a plate and stringers, while the second uses two-dimensional elements to simulate the plate and the beam elements for the stringers. The third approach uses a refined one-dimensional model, based on the Carrera Unified Formulation. This refined one-dimensional model considers a variable kinematic displacement field over the beam cross section. In the present work, Lagrange polynomials are used to describe the cross-sectional displacement field. The use of a component-wise modeling approach allows the stiffeners to be modeled as independent entities. The component-wise approach was first assessed and convergence was then evaluated. The performances of these models in the analysis of reinforced structure were then compared with those from classical models. The use of refined one-dimensional models allows stiffener modes to be investigated. The results show that this approach is comparable to a full three-dimensional solution. The use of classical one- and two-dimensional models does not allow the local deformation of reinforcements to be taken into account. Therefore, these models cannot be considered accurate when the aim of the analysis is to investigate the local mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43

Similar content being viewed by others

References

  1. Timoshenko, S.P.: Theory of Plates and Shells, 2nd edn. McGraw-Hill, New York (1959)

    MATH  Google Scholar 

  2. Bauchau, O.A., Craig, J.I.: Structural Analysis: With Applications to Aerospace Structures. Springer, New York (2009)

    Book  Google Scholar 

  3. Deb, A., Booton, M.: Finite element models for stiffened plates under transverse loading. Comput. Struct. 8(3), 361–372 (1988)

    Article  MATH  Google Scholar 

  4. Bert, C.W., Jang, S.K., Striz, A.G.: Nonlinear bending analysis of orthotropic rectangular plates by the method of differential quadrature. Comput. Mech. 5(2/3), 217–226 (1989)

    Article  MATH  Google Scholar 

  5. Farsa, J., Kukreti, A.R., Bert, C.W.: Fundamental frequency analysis of single spacially orthotropic, generally orthotropic and anisotropic rectangular layered plates by differential quadrature method. Comput. Struct. 46(3), 465–477 (1993)

    Article  MATH  Google Scholar 

  6. Civan, F.: Solving multivariable mathematical models by the quadrature and cubature methods. Numer. Methods Partial Differ. Equ. 10, 545–567 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hrennikoff, A.: Solution of problems of elasticity by the framework method. J. Appl. Mech. 12, 169–175 (1941)

    MathSciNet  MATH  Google Scholar 

  8. Courant, R.: Variational methods for the solution of problems of equilibrium and vibrations. Bull. Am. Math. Soc. 43, 1–23 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  9. Strang, G., Fix, G.: An analysis of the finite element method, Wellesley-Cambridge Press, United States (2008)

    MATH  Google Scholar 

  10. Leissa, A.W.: Vibration of plate. NASA, NASA-SP-160 (1969)

  11. Rossi, R.E., Laura, P.A.A.: On the effect of the poissons ratio and certain approximation schemes on transverse vibrations of thin rectangular plates with a free edge. J. Sound Vib. 194(3), 439–444 (1996)

    Article  Google Scholar 

  12. Manzanares, B., Flores, J., Gutiérrez, L., Méndez, R.A., Monsivais, G., Morales, A., Ramos, F.: Flexural vibrations of a rectangular plate for the lower normal modes. J. Sound Vib. 329, 5105–5115 (2010)

    Article  Google Scholar 

  13. Euler, L.: De curvis elasticis. methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis iso-perimetrici lattissimo sensu accepti. Bousquet, Geneva (1744)

  14. Timoshenko, S.P., Goodier, J.N.: Theory of Elasticity. McGraw-Hill, New York (1951)

    MATH  Google Scholar 

  15. Kirchhoff, G.: U\(\ddot{{\rm b}}\)ber das gleichgwich und die bewegung einer elastischen schiebe. Journal f\(\ddot{u}\)r die reine und angewandte Mathematik, 40, 51–88 (1850)

  16. Love, A.E.H.: The Mathematical Theory of Elasticity, 4th edn. Cambridge University Press, Cambridge (1927)

    MATH  Google Scholar 

  17. Reissner, E.: The effect of transverse shear deformation on the bending of elastic plates. ASME J. Appl. Mech. 12, 68–77 (1945)

    MathSciNet  MATH  Google Scholar 

  18. Mindlin, R.D.: Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. ASME J. Appl. Mech. 18, 31–38 (1951)

    MATH  Google Scholar 

  19. Buehrle, R.D., Fleming, G.A.: R. S. from NASA Langley Research Center Pappa, F. W. from Lockheed Martin Engineering Grosveld, and Sciences. Finite element model development and validation for airvraft fuselage structures. In: XXVIII International Modal Analysis Conference, San Antonio, Texas, 7–10, Feb 2000

  20. Durin, G., Bouvier, F., Mastrangelo, G., Robert, E.: Ariane 5 solid rocket booster dynamic behaviour with respect to pressure oscillations. Prog. Propuls. Phys. 2, 149–162 (2011)

    Article  Google Scholar 

  21. Qing, G., Feng, Z., Liu, Y., Qiu, J.: A semianalytical solution for free vibration analysis of stiffened cylindrical shells. J. Mech. Mater. Struct. 1(1), 129–145 (2006)

    Article  Google Scholar 

  22. Zhua, P., Leia, Z.X., Liew, K.M.: Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory. Compos. Struct. 94(4), 1450–1460, (2012)

    Article  Google Scholar 

  23. Carrera, E., Cinefra, M., Petrolo, M., Zappino, E.: Finite Element Analysis of Structures Through Unified Formulation. Wiley, Amsterdam (2014)

    Book  MATH  Google Scholar 

  24. Carrera, E., Giunta, G.: Refined beam theories based on a unified formulation. Int. J. Appl. Mech. 2(1), 117–143 (2010)

    Article  Google Scholar 

  25. Carrera, E., Giunta, G., Nali, P., Petrolo, M.: Refined beam elements with arbitrary cross-section geometries. Comput. Struct. 88(5–6), 283–293 (2010)

    Article  Google Scholar 

  26. Carrera, E., Giunta, G., Petrolo, M.: Beam Structures, Classical and Advanced Theories. Wiley, New Jersey (2011)

    Book  MATH  Google Scholar 

  27. Carrera, E., Pagani, A., Petrolo, M.: Classical, refined and component-wise analysis of reinforced-shell structures. AIAA J. 51(5), 1255–1268 (2013)

    Article  Google Scholar 

  28. Carrera, E., Zappino, E., Cavallo, T.: Static analysis of reinforced thin-walled plates and shells by means of finite element models. Int. J. Comput. Methods Eng. Sci. Mech. 17(2), 106–126 (2016)

    Article  MathSciNet  Google Scholar 

  29. Carrera, E., Pagani, A., Petrolo, M.: Component-wise method applied to vibration of wing structures. J. Appl. Mech. 88(4), 041012-1–041012-15 (2013)

    Google Scholar 

  30. Zappino, E., Cavallo, T., Carrera, E.: Free vibration analysis of reinforced thin-walled plates and shells through various finite element models. Mech. Adv. Mater. Struct. 23(9), 1005–1018 (2016)

    Article  Google Scholar 

  31. Carrera, E., Zappino, E., Cavallo, T.: Accurate free vibration analysis of launcher structures using refined 1d models. Int. J. Aeronaut. Space Sci. (IJASS) 16(2), 206–222 (2015)

    Google Scholar 

  32. Carrera, E., Cavallo, T., Zappino, E.: Effect of solid mass consumption on the free-vibration analysis of launchers. J. Spacecr. Rocket (2016). doi:10.2514/1.A33650 (in press)

    Google Scholar 

  33. Carrera, E., Petrolo, M., Nali, P.: Unified formulation applied to free vibrations finite element analysis of beams with arbitrary section. Shock Vib. 18(3), 485–502 (2011)

    Article  Google Scholar 

  34. Allemang, R.J., Brown, D.L.: A correlation coefficient for modal vector analysis. In: Proceedings of the 1st SEM International Modal Analysis Conference, pp 110–116, Orlando, FL, 8-10 Nov (1982)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Zappino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cavallo , T., Zappino, E. & Carrera, E. Component-wise vibration analysis of stiffened plates accounting for stiffener modes. CEAS Aeronaut J 8, 385–412 (2017). https://doi.org/10.1007/s13272-017-0244-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13272-017-0244-5

Keywords

Navigation