Skip to main content
Log in

Numerical investigation of the vortex roll-up from a helicopter blade tip using a novel fixed-wing adaptation method

  • Original Paper
  • Published:
CEAS Aeronautical Journal Aims and scope Submit manuscript

Abstract

This contribution relates to the simulation of the flow around the tip of a helicopter rotor blade in hovering flight conditions. We here propose a new methodology of framework adaptation, using a comprehensive rotor code and high-fidelity numerical simulations. We construct an equivalent fixed-wing configuration from a rotating blade, in which centrifugal and Coriolis forces are neglected. The effect of this approximation on the solution is analyzed. The method is validated by a detailed comparison with wind tunnel data from the literature, concerning aerodynamic properties and tip vortex roll-up. This validation also includes variations of the pitch angle and rotational speed, up to transonic tip velocities. Compared to previously published methods of framework adaptation, the new hybrid method is found to reproduce more accurately the flow around a rotating-blade tip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Abbreviations

(r, θ, z):

Rotating-blade frame

(x, y, z):

Fixed-wing frame

(X, Y, Z):

Inertial frame

(δ, n):

Sectional frame

(ξ, η, ζ):

Non-inertial frame

c :

Blade chord (m)

C n :

Lift coefficient

C p :

Pressure coefficient

C t :

Thrust coefficient

M :

Mach number

R :

Blade radius (m)

Ro :

Rossby number

V i :

Induced velocity m s−1

V tip :

Tip speed (m s−1)

ρ :

Fluid density (kg m−3)

ψ :

Wake age (°)

ψ S :

Segregation wake age (°)

Ω:

Rotational speed (rpm)

CT:

Caradonna and Tung [1]

KT:

Kocurek and Tangler [2]

K:

Komerath et al. [3]

S:

Srinivasan and McCroskey [4]

References

  1. Caradonna, F.X., Tung, C.: Experimental and analytical studies of a model helicopter rotor in hover, NASA TM-81232 (1981)

  2. Kocurek, J.D., Tangler, J.L.: A prescribed wake lifting surface hover performance analysis. J Am Helicopter Soc 22(1), 24–35 (1977). doi:10.4050/JAHS.22.24

    Article  Google Scholar 

  3. Komerath, N.M., Liou, S.-G., Hyun, J.-S.: Flowfield of a swept blade tip at high pitch angles. In: 29th Aerospace Sciences Meeting (1991). doi:10.2514/6.1991-704

  4. Srinivasan, G.R., McCroskey, W.J.: Navier-stokes calculations of hovering rotor flowfields. J Aircr 25(10), 865–874 (1988). doi:10.2514/3.45673

    Article  Google Scholar 

  5. Caradonna, F.X.: The application of CFD to rotary wing flow problems, NASA TM-102803 (1992)

  6. Kamkar, S.J., Jameson, A., Wissink, A.M., Sankaran, V.: Automated off-body cartesian mesh adaptation for rotorcraft simulations. In: 49th Aerospace Sciences Meeting, 17298–17322 (2011). doi:10.2514/6.2011-1269

  7. Rumsey, C.L., Gatski, T.B., Morrison, J.H.: Turbulence model predictions of strongly curved flow in a U-duct. AIAA J 38(8), 1394–1402 (2000). doi:10.2514/2.1115

    Article  Google Scholar 

  8. Spalart, P.R., Shur, M.: On the sensitization of turbulence models to rotation and curvature. Aerosp Sci Technol 1(5), 297–302 (1997). doi:10.1016/S1270-9638(97)90051-1

    Article  MATH  Google Scholar 

  9. Komerath, N., Smith, M.J.: Rotorcraft wake modeling: past, present and future. In: 35th European Rotorcraft Forum, 1–26 (2009). ISBN: 9781615678747

  10. Srinivasan, G.R., Raghavan, V., Duque, E.P.N., McCroskey, W.J.: Flowfield analysis of modern helicopter rotors in hover by Navier–Stokes method. J Am Helicopter Soc 38(3), 1–11 (1993). doi:10.4050/JAHS.38.3

    Google Scholar 

  11. Strawn, R.C., Djomehri, M.J.: Computational modeling of hovering rotor and wake aerodynamics. J Aircr 39(5), 786–793 (2002). doi:10.2514/2.3024

    Article  Google Scholar 

  12. Lorber, P.F., Stauter, R.C., Landgrebe, A.J.: A comprehensive hover test of the airloads and airflow of an extensively instrumented model helicopter rotor. In: American Helicopter Society 45th Annual Forum, 281–295 (1989)

  13. Potsdam, M., Yeo, H., Johnson, W.: Rotor airloads prediction using loose aerodynamic/structural coupling. J Aircr 43(3), 732–742 (2006). doi:10.2514/1.14006

    Article  Google Scholar 

  14. Caradonna, F.X., Desopper, A., Tung, C.: Finite difference modeling of rotor flows including wake effects. J Am Helicopter Soc 29(2), 26–33 (1984). doi:10.4050/JAHS.29.26

    Article  Google Scholar 

  15. Egolf, T.A., Sparks, S.P.: A full potential flow analysis with realistic wake influence for helicopter rotor airload prediction, NASA CR-4007 (1987)

  16. Gray, R.B., McMahon, H.M., Shenoy, K.R., Hammer, M.L.: Surface pressure measurements at two tips of a model helicopter rotor in hover, NASA CR-3281 (1980)

  17. Khanna, H., Baeder, J.D.: Coupled free-wake/CFD solutions for rotors in hover using a field velocity approach. In: American Helicopter Society 52nd Annual Forum, 475–487 (1996). ISBN: 9781617829413

  18. Moulton, M.A., Ramachandran, K., Hafez, M.M., Caradonna, F.X. The development of a hybrid CFD method for the prediction of hover performance. In: American Helicopter Society 2nd Specialists’ Conference on Aeromechanics (1995)

  19. Bhagwat, M., Moulton, M.A. and Caradonna, F.X.: Hybrid CFD for rotor hover performance prediction. In: 24th Applied Aerodynamics Conference (2006). doi:10.2514/6.2006-3474

  20. Steinhoff, J., Ramachandran, K.: Free-wake analysis of compressible rotor flows. AIAA J 28(3), 426–431 (1990). doi:10.2514/3.10410

    Article  Google Scholar 

  21. Brown, R.E.: Rotor wake modeling for flight dynamic simulation of helicopters. AIAA J 38(1), 57–63 (2000). doi:10.2514/2.922

    Article  Google Scholar 

  22. Whitehouse, G.R., Tadghighi, H.: Investigation of hybrid grid-based computational fluid dynamics methods for rotorcraft flow analysis. J Am Helicopter Soc 56(3), 1–10 (2011). doi:10.4050/jahs.56.032004

    Article  Google Scholar 

  23. Steinhoff, J., Underhill, D.: Modification of the euler equations for “vorticity confinement”: application to the computation of interacting vortex rings. Phys Fluids 6(8), 2738–2744 (1994). doi:10.1063/1.868164

    Article  MATH  Google Scholar 

  24. Tsukahara, T., Ota, T. and Obukata, M.: Numerical analysis around rotor blade by vortex confinement. In: American Helicopter Society 58th Annual Forum, 1527–1541 (2002). ISBN: 9781617829352

  25. Agarwal, R.K., Deese, J.E.: Euler calculations for flowfield of a helicopter rotor in hover. J Aircr 24(4), 231–238 (1987). doi:10.2514/3.45431

    Article  Google Scholar 

  26. Vion, L., Delattre, G., Falissard, F. and Jacquin, L.: Counter-rotating open rotor (CROR): flow physics and simulation, 20ème Congrès Français de Mécanique (2011). http://hdl.handle.net/2042/46356

  27. Benoit, B., Dequin, A.-M., Kampa, K., von Grünhagen, W., Basset, P.-M., Gimonet, B., HOST, a general helicopter simulation tool for Germany and France. In: American Helicopter Society 56th Annual Forum, 660–681 (2000). ISBN: 9781617829376

  28. Landgrebe, A.J.: The wake geometry of a hovering helicopter rotor and its influence on rotor performance. J Am Helicopter Soc 17(4), 3–15 (1972). doi:10.4050/JAHS.17.3

    Article  Google Scholar 

  29. Cambier, L., Heib, S., Plot, S.: The onera elsA CFD software: input from research and feedback from industry. Mech Ind 14(3), 159–174 (2013). doi:10.1051/meca/2013056

    Article  Google Scholar 

  30. Sides, J. and Boniface, J.C.: Calcul d’Écoulements Autour de Pales de Rotor d’Hélicoptère à Partir de la Résolution des Équations d’Euler Compressibles, AAAF 28ème Colloque d’Aérodynamique Appliquée (1991)

  31. Joulain, A.: Aerodynamic simulations of helicopter main-rotor blade tips, Ph.D. Thesis, Université d’Aix-Marseille (2015)

  32. Menter, F.R.: Improved two-equation k-omega turbulence models for aerodynamic flows, NASA TP-103975 (1992)

  33. Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J 32(8), 1598–1605 (1994). doi:10.2514/3.12149

    Article  Google Scholar 

  34. Jameson, A., Schmidt, W. and Turkel, E.: Numerical solution of the euler equations by finite volume methods using Runge–Kutta time-stepping schemes. In: AIAA 14th Fluid and Plasma Dynamics Conference (1981). doi:10.2514/6.1981-1259

  35. Tennekes, H., Lumley, J.L.: A first course in turbulence. MIT Press, Cambridge (1972). ISBN: 9780262200196

  36. Jeong, J., Hussain, F.: On the identification of a vortex. J Fluid Mech 285, 69–94 (1995). doi:10.1017/S0022112095000462

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank Michael Le Bars (IRPHE-CNRS) for discussions on the centrifugal and Coriolis forces.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Leweke.

Additional information

This paper is based on a presentation at the 41st European Rotorcraft Forum, September 1–4, 2015, Munich, Germany.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joulain, A., Desvigne, D., Alfano, D. et al. Numerical investigation of the vortex roll-up from a helicopter blade tip using a novel fixed-wing adaptation method. CEAS Aeronaut J 8, 245–260 (2017). https://doi.org/10.1007/s13272-016-0234-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13272-016-0234-z

Keywords

Navigation