Skip to main content

An estimation of the UV radiation inside the cockpits of large commercial jets


UV irradiances and UV doses inside the cockpit of large commercial jets are estimated. Results are based on radiative transfer calculations taking into account the spectral transmittances and the limited fields of view of large commercial jet windscreens. In a first step, vertical profiles of UV irradiances for a cloud free atmosphere over snow free and snow covered surfaces and for an atmosphere containing a water cloud layer are simulated. It turns out that the windscreens block the UV-B radiation and transmit parts of the UV-A radiation. Comparing UV irradiances inside and outside the cockpit show that the intensity of UV radiation inside strongly depends on whether the direct sun is entering the cabin or not. Without direct sun the diffuse UV radiation inside the cockpit amounts to about 5% the ambient UV irradiance outside the aircraft. In cases of low sun when direct radiation can reach the pilot, percentages grow from 50 to 100% with increasing solar zenith angle. A water cloud layer between 2 and 4 km increases the UV irradiances inside a cockpit by about 7% at 10 km altitude when compared to the cloud free atmosphere. A snow covered surface causes a similar increase. Finally, and by the aid of MOZAIC waypoint data UV doses were estimated for selected long-distance flights between Europe and the overseas continents North and South America, South Africa, and East Asia. UV doses are affected by takeoff and landing time, by the sun position relative to the aircraft heading during flight, and by the day of the year. UV doses inside the cockpit amount to maximum 60% the UV doses outside at the same altitude, however, in most cases percentages are between about 10 and 40%.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5



Atlanta, IATA-code


Aerosol optical thickness


Brussels, IATA-code


Cloud optical thickness


Dobson units


Frankfurt, IATA-code


Sao Paulo, IATA-code


International Air Transport Association


Measurement of ozone and water vapor on airbus in-service aircraft


Tokyo, IATA-code


Solar zenith angle








Windhoek, IATA-code

Δδ :

Viewing zenith angle interval (°)

Δφ :

Viewing azimuth angle interval (°)

f :


L λ :

Spectral irradiance (Wm−2 nm−1)

λ :

Wavelength (nm)

r :

Ratio of wavelength integrated irradiances

T λ :

Spectral windscreen transmittance λ Wavelength (nm)

ω :

Solid angle (sr)


  1. Kimlin, M.G., Tenkate, T.D.: Occupational exposure to ultraviolet radiation: the duality dilemma. Rev. Environ. Health. 22(1), 1–38 (2007)

    Article  Google Scholar 

  2. WHO, World Health Organization, ©2015. and related links and reports (2015). Accessed 15 June 2015

  3. Diffey, B.L., Roscoe, A.H.: Exposure to solar ultraviolet radiation in flight. Aviat. Space Environ. Med. 61(11), 1032–1035 (1990)

    Google Scholar 

  4. Chorley, A.D., Evans, B.J.W., Benwell, M.J.: Civilian pilot exposure to ultraviolet and blue light and pilot use of sunglasses, review article. Aviat. Space Environ. Med. 82(9), 895–900 (2011). doi:10.3357/ASEM.3034

    Article  Google Scholar 

  5. Huang, X.X., Bernerd, F., Halliday, G.M.: Ultraviolet A within sunlight induces mutations in the epidermal basal layer of engineered human skin. Am. J. Pathol. 174(4), 1534–1543 (2009). doi:10.2353/ajpath.2009.080318

    Article  Google Scholar 

  6. Kappes, U.P., Luo, D., Potter, M., Schulmeister, K., Rünger, T.M.: Short- and long-wave UV light (UVB and UVA) induce similar mutations in human skin cells. J. Invest. Dermatol. 126, 667–675 (2006). doi:10.1038/sj.jid.5700093

    Article  Google Scholar 

  7. Nakagawara, V.B., Montgomery, R.W., Marshall, J.W.: Optical radiation, transmittance of aircraft windscreens and pilot vision. Federal Aviation Administration, Washington, DC (2007)

    Google Scholar 

  8. Sanlorenzo, M., Mackenzie, R., Wehner, M.R., Linos, E., Kornak, J., Kainz, W., Posch, C., Vujic, I., Johnston, K., Gho, D., Monico, G., McGrath, J.T., Osella-Abate, S., Quaglino, P., Cleaver, J.E., Ortiz-Urda, S.: The risk of melanoma in airline pilots and cabin crew: a meta-analysis, published online September 3, 2014. JAMA Dermatol (2014). doi:10.1001/jamadermatol.2014.1077

    Google Scholar 

  9. Sanlorenzo, M., Vujic, I., Posch, C., Cleaver, J.E., Quaglino, P., Ortiz-Urda, S.: The risk of melanoma in pilots and cabin crew: UV measurements in flying airplanes. JAMA Dermatol. 151(4), 450–452 (2015). doi:10.1001/jamadermatol.2014.4643

  10. Chorley, A., Higglet, M., Baczynska, K., Hunter, R., Khazova, M.: Measurements of pilots’ occupational solar UV exposure. J. Photochem. Photobiol. 90(4), 935–940 (2014). doi:10.1111/php.12269

    Google Scholar 

  11. Liu, Q., Weng, F.: Advanced doubling adding method for radiative transfer in planetary atmospheres. J. Atmos. Sci. 63, 3459–3465 (2006). doi:10.1175/JAS3808.1

    Article  Google Scholar 

  12. Meerkötter, R., Degünther, M.: A radiative transfer case study for 3-d cloud effects in the UV. Geophys. Res. Lett. 28(9), 1683–1686 (2001)

    Article  Google Scholar 

  13. Meerkötter, R., Verdebout, J., Bugliaro, L., Edvardsen, K., Hansen, G.: An evaluation of cloud affected UV radiation from polar orbiting and geostationary satellites at high latitudes. Geophys. Res. Lett. 30(18), 1956 (2003). doi:10.1029/2003GL017850

    Article  Google Scholar 

  14. Anderson, G.P., Clough, S.A., Kneizys, F.X., Chetwynd, J.H., Shettle, E.P.: AFGL atmospheric constituent profiles (0–120 km). No. AFGL-TR-860110, Air Force Geophysics Lab, Hanscom, AFB, MA (1986)

  15. Meinander, O., Kazadzis, S., Arola, A., Riihelä, A., Räisänen, P., Kivi, R., Kontu, A., Kouznetsov, R., Sofiev, M., Svensson, J., Suokanerva, H., Aaltonen, V., Manninen, T., Roujean, J.-L., Hautecoe, O.: Spectral albedo of seasonal snow during intensive melt period at Sodankylä, beyond the Arctic Circle. Atmos. Chem. Phys. 13, 3793–3810 (2013). doi:10.5194/acp-13-3793-2013

  16. Kinne, S., O’Donnel, D., Stier, P., Kloster, S., Zhang, K., Schmidt, H., Rast, S., Giorgetta, M., Eck, T.F., Stevens, B.: MAC-v1: a new global aerosol climatology for climate studies. JAMES. 5, 704–740 (2013). doi:10.1002/jame.20035

    Google Scholar 

  17. Report, AIRBUS, A319/A320/A321 Flight deck and systems briefing for pilots, STL945.7136/97, issue September (1998)

  18. Report, AIRBUS, A340 Flight deck and systems briefing for pilots, STL472.502/90, issue 6 (2000)

Download references


The author acknowledges the strong support of the European Commission, Airbus, and the Airlines (Lufthansa, Air-France, Austrian, Air Namibia, Cathay Pacific, Iberia and China Airlines so far) who carry the MOZAIC or IAGOS equipment and perform the maintenance since 1994. MOZAIC is presently funded by INSU-CNRS (France), Météo-France, Université Paul Sabatier (Toulouse, France) and Research Center Jülich (FZJ, Jülich, Germany). IAGOS has been and is additionally funded by the EU projects IAGOS-DS and IAGOS-ERI. The MOZAIC-IAGOS database is supported by ETHER (CNES and INSU-CNRS). Data are also available via Ether web site Furthermore, the author would like to thank Klaus Gierens (DLR) for fruitful discussions and his constructive comments.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Ralf Meerkötter.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Meerkötter, R. An estimation of the UV radiation inside the cockpits of large commercial jets. CEAS Aeronaut J 8, 93–104 (2017).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • UV radiation
  • UV irradiance
  • UV dose
  • Cockpit
  • Pilots
  • Commercial jets
  • Radiative transfer simulations