Skip to main content

Design and sizing of a parametric structural model for a UCAV configuration for loads and aeroelastic analysis

Abstract

The authors present the setup of a parametric structural finite element model for the loads and aeroelastic analysis of an unmanned combat air vehicle (UCAV). The DLR-F19 is a “flying wing” configuration with a geometry based on previous research conducted in the scope of the “Mephisto” project and its predecessors “FaUSST” and “UCAV2010”. While a considerable body of knowledge exists regarding conventional configurations, unconventional configurations lack that same level of experience, and data for comparison is rarely available. Using an adequate structural model, the conceptual design stage becomes more sophisticated and already allows for the investigation of physical effects at an early stage of the design process. Strategies for structural modeling and proper condensation, aero-structural coupling, loads integration, control surface attachment, and the use of composite materials are addressed in this paper. The resulting model is sized for minimum structural weight, taking into account 216 load cases. In addition, a comprehensive loads analysis campaign is conducted and the resulting loads are evaluated at defined monitoring stations. In addition to maneuver loads, quasi-static gust loads are calculated using the Pratt formula and compared to results obtained from a dynamic 1-cosine gust simulation. The reasons for higher loads of the Pratt formula based method are discussed. The conclusion is that the Pratt formula is suitable for the preliminary sizing of “flying wing” configurations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. 1.

    Huber, K., Schütte, A., Rein, M.: Numerical investigation of the aerodynamic properties of a flying wing configuration. In: American Institute of Aeronautics and Astronautics (ed.) 32nd AIAA Applied Aerodynamics Conference. New Orleans, Louisiana (25–28 June 2012)

  2. 2.

    Huber, K.C., Vicroy, D.D., Schuette, A., Huebner, A.: UCAV model design and static experimental investigations to estimate control device effectiveness and control capabilities. In: American Institute of Aeronautics and Astronautics (ed.) 32nd AIAA Applied Aerodynamics Conference. Atlanta, GA (2014). doi:10.2514/6.2014-2002

  3. 3.

    Wiggen, S., Voß, G.: Development of a wind tunnel experiment for vortex dominated flow at a pitching Lambda wing. CEAS Aeronaut. J. 5(4), 477–486 (2014). doi:10.1007/s13272-014-0121-4

    Article  Google Scholar 

  4. 4.

    Krüger, W., Cumnuantip, S., Liersch, C.M.: Multidisciplinary conceptual design of a UCAV configuration. In: Proceedings AVT-MP173. Sofia, Bulgaria (16–18 May 2011)

  5. 5.

    Liersch, C.M., Huber, K.C.: Conceptual design and aerodynamic analyses of a generic UCAV configuration. In: American Institute of Aeronautics and Astronautics (ed.) 32nd AIAA Applied Aerodynamics Conference. Atlanta, GA (16–20 June 2014). doi:10.2514/6.2014-2001

  6. 6.

    X-47B UCAS Unmanned Combat Air System Data Sheet. http://www.northropgrumman.com/capabilities/x47bucas/documents/ucas-d_data_sheet.pdf (2014)

  7. 7.

    X-47B UCAS Makes Aviation History...Again! http://www.northropgrumman.com/Capabilities/X47BUCAS/Pages/default.aspx (2015)

  8. 8.

    Boeing phantom works to lead research on X-48B blended wing body concept. http://boeing.mediaroom.com/2006-05-04-Boeing-Phantom-Works-to-Lead-Research-on-X-48B-Blended-Wing-Body-Concept (2006)

  9. 9.

    X-48B BWB team completes phase 1 test flights. http://www.nasa.gov/centers/dryden/news/NewsReleases/2010/10-12.html (2013)

  10. 10.

    Britt, R.T., Jacobson, S.B., Arthurs, T.D.: Aeroservoelastic analysis of the B-2 Bomber. J. Aircr. 37(5), 745–752 (2000). doi:10.2514/2.2674

    Article  Google Scholar 

  11. 11.

    Winther, B.A., Hagemeyer, D.A., Britt, R.T., Roden, W.P.: Aeroelastic effects on the B-2 Maneuver response. J. Aircr. 32(4), 862–867 (1995). doi:10.2514/3.46802

    Article  Google Scholar 

  12. 12.

    Schweiger, J., Sensburg, O., Berns, H.J.: Aeroelastic problems and structural design of a tailless CFC-Sailplane. In: Second International Symposium on Aeroelasticity and Structural Dynamics. Aachen (April 1–3 1985)

  13. 13.

    Deck, U., Schwochow, J.: Aeroelastische Voruntersuchung des Nurflügelsegelflugzeugs AK-X. In: Deutscher Luft- und Raumfahrtkongress 2015. Rostock (22–24 September 2015)

  14. 14.

    Chen, D., Britt, R., Roughen, K., Stuewe, D.: Practical application of multidisciplinary optimization to structural design of next generation supersonic transport. In: 13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference. American Institute of Aeronautics and Astronautics, Fort Worth, Texas (13–15 September 2010). doi:10.2514/6.2010-9311

  15. 15.

    De La Garza, McCulley, Johnson, Hunten, Action, Skillen, Zink: Recent advances in rapid airframe modeling at lockheed Martin Aeronautics Company. In: RTO-MP-AVT-173 Workshop. North Atlantic Treaty Organization, Bulgaria (16–19 May 2011)

  16. 16.

    Kelm, Läpple, Grabietz: Wing primary structure weight estimation of transport aircrafts in the pre-development phase. In: 54th Annual Conference of Society of Allied Weight Engineers, Inc. Huntsville, Alabama (22–24 May 1995)

  17. 17.

    Wenzel, J., Sinapius, M., Gabbert, U.: Primary structure mass estimation in early phases of aircraft development using the finite element method. CEAS Aeronaut J 3(1), 35–44 (2012). doi:10.1007/s13272-011-0040-6

    Article  Google Scholar 

  18. 18.

    Nangia, R., Palmer, M.: A comparative study of UCAV type wing planforms—aero performance and stability considerations. In: 23rd AIAA Applied Aerodynamics Conference. American Institute of Aeronautics and Astronautics, Toronta, Ontario, Canada (6–9 June 2005). doi:10.2514/6.2005-5078

  19. 19.

    Tianyuan, H., Xiongqing, Y.: Aerodynamic/stealthy/structural multidisciplinary design optimization of unmanned combat air vehicle. Chin. J. Aeronaut. 22(4), 380–386 (2009). doi:10.1016/S1000-9361(08)60114-4

    Article  Google Scholar 

  20. 20.

    Woolvin, S.: A conceptual design studies of the 1303 UCAV configuration. In: 24th Applied Aerodynamics Conference. American Institute of Aeronautics and Astronautics, San Francisco, California (5–8 June 2006). 10.2514/6.2006-2991

  21. 21.

    Klimmek, T.: Parametric set-up of a structural model for fermat configuration for aeroelastic and loads analysis. J. Aeroelast. Struct. Dyn. 2, 31–49 (2014). doi:10.3293/asdj.2014.27

    Google Scholar 

  22. 22.

    Klimmek, T.: Parameterization of topology and geometry for the multidisciplinary optimization of wing structures. In: CEAS 2009—European Air and Space Conference. Manchester, United Kingdom (26–29 October 2009)

  23. 23.

    Krüger, W., Klimmek, T., Liepelt, R., Schmidt, H., Waitz, S., Cumnuantip, S.: Design and aeroelastic assessment of a forward-swept wing aircraft. CEAS Aeronaut. J. 5(4), 419–433 (2014). doi:10.1007/s13272-014-0117-0

    Article  Google Scholar 

  24. 24.

    Schürmann, H.: Konstruieren mit Faser-Kunststoff-Verbunden. Springer, Berlin (2007)

    Google Scholar 

  25. 25.

    Rodden, W.P., Albano: A doublet lattice method for calculating lift distributions on oscillation surfaces in subsonic flows. In: Northorp N. (ed.) AIAA 6th Aerospace Sciences Meeting, New York (22–24 January 1968)

  26. 26.

    Schwamborn, D., Gerhold, T., Heinrich, R.: The DLR Tau-code: recent applications in research and industry. In: ECCOMAS CDF 2006 (2006)

  27. 27.

    Harder, R.L., Desmarais, R.N.: Interpolation using surface splines. J. Aircr. 9(2), 189–191 (1972). doi:10.2514/3.44330

    Article  Google Scholar 

  28. 28.

    European Aviation Safety Agency (ed.): Certification specifications for large aeroplanes CS-25. Amendment 16 (2015)

  29. 29.

    European Aviation Safety Agency (ed.): Certification specifications for normal, utility, aerobatic, and commuter category aeroplanes CS-23. Amendment 3 (2012)

  30. 30.

    Pratt, K.G., Walker, W.G.: A revised gust-load formula and a re-evaluation of V-G data taken on civil transport airplanes from 1933 to 1950. Tech. Rep. Report 1206, NACA (1953)

  31. 31.

    MSC. Software Corporation: set definition. In: McLean, D.M. (ed.) MSC Nastran Linear Static Analysis User’s Guide, vol. 2012.2, pp. 485–489 (2012)

  32. 32.

    Handojo, V., Klimmek, T.: Böenlastanalyse der vorwärts gepfeilten ALLEGRA-Konfiguration. In: Deutscher Luft- und Raumfahrtkongress 2015. Rostock (22–24 September 2015)

  33. 33.

    Palacios, R., Climent, H., Karlsson, A., Winzell, B.: Assessment of strategies for correcting linear unsteady aerodynamics using CFD or test results. In: International Forum on Aeroelasticity and Structural Dynamics (2001)

  34. 34.

    Voss, A., Klimmek, T.: Maneuver loads calculation with enhanced aerodynamics for a UCAV configuration. In: AIAA Modeling and Simulation Technologies Conference. American Institute of Aeronautics and Astronautics, Washington, D.C. (2016). 10.2514/6.2016-3838

Download references

Acknowledgements

The authors wish to thank Georg Wellmer and Sara Kirchmayr from the Airbus Defence and Space Loads Department for the prolific collaboration.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Arne Voss.

Additional information

This paper is based on a presentation at the German Aerospace Congress, September 22–24, 2015, Rostock, Germany

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Voss, A., Klimmek, T. Design and sizing of a parametric structural model for a UCAV configuration for loads and aeroelastic analysis. CEAS Aeronaut J 8, 67–77 (2017). https://doi.org/10.1007/s13272-016-0223-2

Download citation

Keywords

  • UCAV
  • Parametrized structural modeling
  • Loads
  • Sizing