CEAS Aeronautical Journal

, Volume 7, Issue 3, pp 455–470 | Cite as

Compressors for ultra-high-pressure-ratio aero-engines

  • R. von der Bank
  • S. Donnerhack
  • A. Rae
  • F. Poutriquet
  • A. Lundbladh
  • A. Antoranz
  • L. Tarnowski
  • M. Ruzicka
Original Paper

Abstract

A highly efficient, robust compression system is a key part of any high-performance core engine that is to be developed for meeting future low emission requirements, i.e., for significant reductions in CO2, NOx, and other gaseous emissions. Not only does the compression system has to deliver the increased OPR demanded by the thermal cycle. It has to do so more efficiently to avoid excessive increases in cycle temperatures and weight to avoid reducing the benefit from the new cycle. This challenge is made harder, as OPR is increased up to 70:1, as core-engine size will reduce introducing greater threats to efficiency and compressor stability margin through: (1) lower Reynolds numbers that will result in higher blade losses; (2) tip and shroud/seal clearances increasing due to physical size limitations; (3) if manufacturing tolerances are maintained, blade and vane leading edges, maximum thickness, and fillets radii will be relatively larger; (4) the threat of inclement weather, deterioration, and foreign object damage (FOD) will be greater as compressors get smaller; (5) high aspect ratio blade design will be applied to limit the relative weight and length increase due to required pressure ratio increase of the compression system; (6) higher OPR compression systems will require more stability improvement features, such as VSVs, bleeds, and rotor tip treatments. This paper gives an overview of the above issues and how the FP7 integrated project LEMCOTEC is addressing them through CFD simulations, low- and high-speed rig tests, and innovative designs.

Keywords

Thermal cycle efficiency Pressure ratio Compressor Emissions Core-engine 

Abbreviations

ACARE

Advisory Council for Aeronautics Research in Europe

ASME

American Society of Mechanical Engineers

BLISK

Blade integrated disk

CAEP

Committee on Aviation Environmental Protection

CEC

Carbon emissions calculator (ICAO)

CFD

Computational fluid dynamics

CO

Carbon monoxide

CO2

Carbon dioxide

CRTF

Counter-rotating turbofan

DDTF

Direct drive turbofan

DLR

Deutsches Zentrum für Luft-und Raumfahrt e.V

DP

Mass of species

EC

European Commission

EDP

Engine Development Programme

F

Force (thrust)

FB

Fuel burn

FCC

Flow controlled core

FOD

Foreign objective damage

FP

Framework Programme

GTF

Geared turbofan

HAR

High aspect ratio

HP

High pressure

HPC

High-pressure compressor

IATA

International Air Transport Association

IC

Inter-cooling

ICC

Inter-compressor case

ICAO

International Civil Aviation Organization

INTA

Instituto Nacional de Técnica Aeroespacial

IP

Intermediate-pressure

IP

Integrated project

IPC

Intermediate-pressure compressor

IRA

Inter-cooled and recuperated aero-engine

IRC

Internal re-circulation

ISA

International Standard Atmosphere

ISABE

International Society for Air Breathing Engines

ITP

Industria de Turbo Propulsores S.A

LCC

Life cycle costs

LDI

Lean direct injection

LP(P)

Lean premixed (prevaporised)

LR

Long range

LSRC

Low-speed research compressor

LTF

Large turbo fan

LTO

Landing and take-off

M

Month

MOR

Mid-size open rotor

MSFI

Multi-stage fuel injection

NASA

National Aeronautics and Space Administration

NOx

Nitrogen oxides (NO + NO2)

OGV

Outlet guide vanes

ONERA

Office National d’Études et de Recherches Aérospatiales

OPR

Overall pressure ratio

P

Pressure

PAX

Passenger

PBS

PRVNI BRNENSKA STROJIRNA VELKA BITES A.S

PR

Pressure ratio

PERM

Partially evaporating rapid mixing

R

Rotor

RRD

Rolls-Royce Deutschland Ltd

RTF

Regional turbo fan

RWTH

Rheinisch-Westfälische Technische Hochschule

SFC

Specific fuel consumption

SLS

Sea level static

SOx

Sulphur oxides

SR

Short range

T

Temperature

TF

Turbofan

T/O

Take-off

TRL

Technology readiness level

TUD

Technische Universität Dresden

UHC

Unburnt hydro-carbons

UV

Ultra-violet

VKI

von Kármán Institute

VSV

Variable stator vanes

VZLU

VÝZKUMNÝ A ZKUŠEBNÍ LETECKÝ ÚSTAV, A.S

WEMM

Whole engine mechanical model

Y

Year

European Project Acronyms

AIDA

aggressive intermediate duct aerodynam

ANTLE

Affordable near-term low emissions

E-BREAK

Engine breakthrough components and subsystems

NEWAC

New aero-engines core concepts

LEMCOTEC

Low emissions core-engine technology

POA

Power optimised aircraft

IATA Airport Three Letter Codes

BRU

Brussels

FRA

Frankfurt

JFK

John F. Kennedy (New York)

TXL

Tegel (Berlin)

References

  1. 1.
    ICAO Aircraft Engine Emissions Databank, Issue 20B, 7 March 2014. EASA, CologneGoogle Scholar
  2. 2.
    von der Bank, R., Donnerhack, S., Rae, A., Poutriquet, F., Lundbladh, A., Peschiulli, A.: Technologies for high thermal efficiency aero-engines. AVT-230/RSM-033 Specialists Meeting, 20–24 April 2015, Rzeszów, PolandGoogle Scholar
  3. 3.
    Peacock, N.: ANTLE—an integration of European and National Research Programmes. Aerodays 2006, 19–20 June 2006, Vienna, AustriaGoogle Scholar
  4. 4.
    Rolt, A., Kyprianidis, K.: Assessment of new aero engine core concepts and technologies in the EC Framework 6 NEWAC project. ICAS2010-4.6.3, 19–24 September 2010, Nice, FranceGoogle Scholar
  5. 5.
    Sieber, J.: Overview of the NEWAC programme, greening of aircraft propulsion—progress and prospects. Royal Aeronautical Society, 20 October 2010, London, UKGoogle Scholar
  6. 6.
    Sturm, W.: Countering the environmental penalties of a growing air traffic by means of active core technologies. ISABE2011-1401, 12–16 September 2011, Gothenburg, SwedenGoogle Scholar
  7. 7.
    Bock, S., Horn, G., Wilfert, G., Sieber, J.: Active core technology within the NEWAC Research program for cleaner and more efficient aero engines. CEAS2007-055, 10–13 September 2007, Berlin, GermanyGoogle Scholar
  8. 8.
    von der Bank, R., Donnerhack, S., Rae, A., Cazalens, M., Lundbladh, A., Dietz, M.: LEMCOTEC—improving the core-engine thermal efficiency. ASME, GT2014-25040, 16–20 June 2014, Düsseldorf, GermanyGoogle Scholar
  9. 9.
    von der Bank, R., Donnerhack, S., Rae, A., Poutriquet, F., Lundbladh, A., Schweinberger, A.: Advanced core engine technologies—assessment and validation. In: European Turbomachinery Conference, Universidad Politécnica de Madrid, ETC2015, 23–26 March 2015, Madrid, SpainGoogle Scholar
  10. 10.
    ICAO Annex 16, Environmental protection, vol. II. Aircraft engine emissions, 3rd edn (2008)Google Scholar
  11. 11.
    Walker, A.D., Barker, A.G., Mariah, I., Peacock, G.L., Carrotte, J.F., Northall, R.M.: An aggressive S-shaped compressor transition duct with swirling flow and aerodynamic Lifting struts. ASME, GT2014-25844, 16–20 June 2014, Düsseldorf, GermanyGoogle Scholar
  12. 12.
    Wallin, F., Bergstedt, R., Walker, A.D., Peacock, G.L.: Aerodesign and validation of turning struts for an intermediate compressor duct. ISABE2015-22143, 25–30 October 2015, Phoenix, Arizona, USAGoogle Scholar
  13. 13.
    Poledno, M.: Rozsireni oblasti stabilni prace odstredivych kompresoru. Thesis, University of Defence, Brno, 2013, Czech RepublicGoogle Scholar
  14. 14.
    Klauke, T., Söhner, D., Drees, B., Winkelmann, P., Klomp-de Boer, R.: Development of a hybrid-unison ring for VSV-systems for new high-OPR aero engines. 64. Deutscher Luft-und Raumfahrtkongress, 22–24 September 2015, Rostock, GermanyGoogle Scholar

Copyright information

© Deutsches Zentrum für Luft- und Raumfahrt e.V. 2016

Authors and Affiliations

  • R. von der Bank
    • 1
  • S. Donnerhack
    • 2
  • A. Rae
    • 3
  • F. Poutriquet
    • 4
  • A. Lundbladh
    • 5
  • A. Antoranz
    • 6
  • L. Tarnowski
    • 7
  • M. Ruzicka
    • 8
  1. 1.Rolls-Royce DeutschlandBlankenfelde-MahlowGermany
  2. 2.MTU Aero-EnginesMunichGermany
  3. 3.Rolls-RoyceDerbyUnited Kingdom
  4. 4.Safran Aircraft EnginesMoissy CramayelFrance
  5. 5.GKN AerospaceTrollhättanSweden
  6. 6.ITPSan Fernando de Henares (Madrid)Spain
  7. 7.Safran Helicopter EnginesBordesFrance
  8. 8.PBSVelká BítešCzech Republic

Personalised recommendations