Raymer, D.P.: Aircraft Design—A Conceptual Approach, 2nd ed. American Institute of Aeronautics and Astronautics, Inc., 1992
Jenkinson, L.R., Simpkin, P., Rhodes, D.: Civil jet aircraft design. Arnold, 1999
Piperni, P., DeBlois, A., Henderson, R.: Development of a multilevel multidisciplinary-optimization capability for an industrial environment. AIAA J. 51(10), 2335–2352 (2013)
Article
Google Scholar
Böhnke, D., Nagel, B., Gollnick, V.: An approach to multi-fidelity in conceptual aircraft design in distributed design environments. In: IEEE Aerospace Conference, 2011
Martins, J.R.R.A., Lambe, A.B.: Multidisciplinary design optimization: a survey of architectures. AIAA J. 51(9), 2049–2075 (2013)
Article
Google Scholar
Athanasopoulos, M., Ugail, H., Castro, G.G.: Parametric design of aircraft geometry using partial differential equations. Adv. Eng. Softw. 40(7), 479–486 (2009)
Article
MATH
Google Scholar
Lee, V.A., Ball, H.G., Wadsworth, E.A., Moran, W.J., McLeod, J.D.: Computerized aircraft synthesis. J. Aircr. 4(5), 402–408 (1967)
Article
Google Scholar
Gregory, T.J.: Computerized preliminary design at the early stages of vehicle definition. NASA-TM-X-62303, 1973
Wampler, S.G., Myklebust, A., Jayaram, S., Gelhausen, P.: Improving aircraft conceptual design—a PHIGS interactive graphics interface for ACSYNT. In: AIAA/AHS/ASEE Aircraft Design, Systems and Operations Conference, 1988
Jayaram, S., Myklebust, A., Gelhausen, P.: ACSYNT—a standards-based system for parametric computer aided conceptual design of aircraft. In: Aerospace Design Conference, 1992
Myklebust, A., Gelhausen, P.: Improving aircraft conceptual design tools—new enhancements to ACSYNT. In: AIAA Aircraft Design, Systems and Operations Meeting, 1993
Mason, W.H., Arledge, T.K.: ACSYNT aerodynamic estimation—an examination and validation for use in conceptual design. In: AIAA/AHS/ASEE Aerospace Design Conference, 1993
Malone, B., Myklebust, A.: ACSYNT—commercialization success (software development project for AirCraft SYNThesis). In: Space Plane and Hypersonic Systems and Technology Conference, 1996
Shahab, H.: ‘Web-ACSYNT’—conceptual-level aircraft systems analysis on the Internet. In: World Aviation Congress, 1997
Stroud, W.J., Sobieszcanski-Sobieski, J., Walz, J.E., Bush, H.G.: Computerized structural sizing at NASA Langley Research Center. In: AIAA Conference on Air Transportation: Technical Perspectives and Forecasts, 1978
Sobieszczanski-Sobieski, J., Haftka, R.T.: Multidisciplinary aerospace design optimization: survey of recent developments. In: 34th Aerospace Sciences Meeting and Exhibit, 1995
Österheld, C., Heinze, W., Horst, P.: Preliminary design of a blended wing body configuration using the design tool PrADO. In: CEAS Conference on Multidisciplinary Aircraft Design and Optimisation, 2001
Ledermann, C., Ermanni, P., Kelm, R.: Dynamic CAD objects for structural optimization in preliminary aircraft design. Aerosp. Sci. Technol. 10(7), 601–610 (2006)
Article
Google Scholar
Luo, X., Rajagopalan, H., Grandhi, R.: MIDAS: multidisciplinary interactive design and analysis system—integration of ASTROS and I-DEAS. In: 37th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, 1665–1679, 1996
Townsend, J.C., Samareh, J.A., Weston, R.P., Zorumski, W. E.: Integration of a CAD system into an MDO framework. NASA/TM-1998-207672, 1998
Ledermann, C., Hanske, C., Wenzel, J., Ermanni, P., Kelm, R.: Associative parametric CAE methods in the aircraft pre-design. Aerosp. Sci. Technol. 9(7), 641–651 (2005)
Article
Google Scholar
Azamatov, A., Lee, J.-W., Byun, Y.-H.: Comprehensive aircraft configuration design tool for integrated product and process development. Adv. Eng. Softw. 42(1–2), 35–49 (2011)
Article
MATH
Google Scholar
Piperni, P., Abdo, M., Kafyeke, F.: The application of multi-disciplinary optimization technologies to the design of a business jet. In: 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2004
Piperni, P., Abdo, M., Kafyeke, F., Isikveren, A.T.: Preliminary aerostructural optimization of a large business jet. J. Aircr. 44(5), 1422–1438 (2007)
Article
Google Scholar
Crossley, W.A., Rutherford, J.W.: Sizing methodology for reaction-driven, stopped-rotor vertical takeoff and landing concepts. J. Aircr. 32(6), 1367–1374 (1995)
Article
Google Scholar
Davis, S.J, Rosenstein, H., Stanzione, K.A., Wisniewski, J.S.: HESCOMP user’s manual. NADC-78265-40, 1979
Schoen, A.H., Rosenstein, H., Stanzione, K., Wisniewski, J.S.: User’s manual for VASCOMP II, 1980
Hirsh, J.E., Wilkerson, J.B., Narducci, R.P.: An integrated approach to rotorcraft conceptual design. In: 45th AIAA Aerospace Sciences Meeting and Exhibit, 2007
Johnson,W.: NDARC—NASA design and analysis of Rotorcraft. NASA/TP–2009-215402, 2009
Johnson, W.: NDARC—NASA design and analysis of rotorcraft: theoretical basis and architecture. In: American Helicopter Society Aeromechanics Specialists’ Conference, 2010
Johnson, W.: NDARC—NASA design and analysis of rotorcraft: validation and demonstration. In: American Helicopter Society Aeromechanics Specialists’ Conference, 2010
Hürlimann, F.: Mass estimation of transport aircraft wingbox structures with a CAD/CAE-based multidisciplinary process. Doctoral thesis, Eidgenössische Technische Hochschule ETH Zürich, 2010
van der Velden, A., Kelm, R., Kokan, D., Mertens, J.: Application of MDO to large subsonic transport aircraft. In: 38th AIAA Aerospace Sciences Meeting and Exhibit, 2000
Mainini, L., Maggiore, P.: Multidisciplinary integrated framework for the optimal design of a jet aircraft wing. Int. J. Aerosp. Eng. 2012, 1–9 (2012)
Article
Google Scholar
Chen, X., Yan, L., Luo, W., Xu, L., Zhao, Y., Wang, Z.: Research on theory and application of multidisciplinary design optimization of flying vehicles. In: 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2006
Hahn, A.S.: Vehicle sketch pad: a parametric geometry modeler for conceptual aircraft design. In: 48th AIAA Aerospace Sciences Meeting and Exhibit, 2010
Fredericks, W.J., Antcliff, K.R., Costa, G., Deshpande, N., Moore, M.D., San Miguel, E.A., Snyder, A.N.: Aircraft conceptual design using vehicle sketch pad. In: 48th AIAA Aerospace Sciences Meeting and Exhibit, 2010
VSP, Vehicle Sketch Pad. http://www.openvsp.org/ (2010). Accessed 22 Apr 2015
Munjulury, R.C., Staack, I., Berry, P., Krus, P.: A knowledge-based integrated aircraft conceptual design framework. CEAS Aeronaut. J. 7(1), 95–105 (2016)
Article
Google Scholar
Roth, G.L., Livingston, J.W., Blair, M., Kolonay, R.: CREATE-AV DaVinci: computationally based engineering for conceptual design. In: 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exhibition, 2010
CPACS homepage, CPACS—common parametric aircraft configuration schema. https://github.com/DLR-LY/CPACS (2016). Accessed: 28 Jan 2016
Travaglini, L., Ricci, S., Bindolino, G.: PyPAD: a multidisciplinary framework for preliminary airframe design. In: 4th EASN Association International Workshop on Flight Physics & Aircraft Design, 286–305, 2014
Zhang, M., Rizzi, A., Nangia, R.: Geometry modeling, parametrization and meshing of conventional and joined-wing aircraft. In: 4th EASN Association International Workshop on Flight Physics & Aircraft Design, 485–500, 2014
Dorbath, F.: A flexible wing modeling and physical mass estimation system for early aircraft design stages, Doctoral thesis, Technical University Hamburg-Harburg, Germany (2014)
Deinert, S., Petersson, Ö., Daoud, F., Baier, H.: Aircraft loft optimization with respect to aeroelastic lift and induced drag loads. In: 10th World Congress on Structural and Multidisciplinary Optimization, 2013
Cerulli, C., Meijer, P., van Tooren, M., Hofstee, J.: Parametric modeling of aircraft families for load calculation support. In: 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, 2004
La Rocca, G., Langen, T.H.M., Brouwers, Y.H.A.: The design and engineering engine. Towards a modular system for collaborative aircraft design. In: 28th International Congress of the Aeronautical Sciences, 2012
Rizzi, A., Zhang, M., Nagel, B., Böhnke, D., Saquet, P.: Towards a unified framework using CPACS for geometry management in aircraft design. In: 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2012
Liersch, C.M., Hepperle, M.: A distributed toolbox for multidisciplinary preliminary aircraft design. CEAS Aeronaut. J. 2, 57–68 (2011)
Article
Google Scholar
Kroo, I., Altus, S., Braun, R., Gage, P., Sobieski, I.: Multidisciplinary optimization methods for aircraft preliminary design. In: 5th Symposium on Multidisciplinary Analysis and Optimization, 1994
Padula, S., Gillian, R.: Multidisciplinary environments: a history of engineering framework development. In 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2006
OpenMDAO, OpenMDAO. http://www.openmdao.org/ (2015). Accessed 22 Apr 2015
Phoenix Integration, ModelCenter. http://www.phoenix-int.com/ (2015). Accessed 05 Aug 2015
Alzubbi, A., Ndiayej, A., Mahdavi, B., Guibault, F., Ozell, B., Trepanier, J.-Y.: On the use of JAVA and RMI in the development of a computer framework for MDO. In: 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, 2000
Chen, B., Liu, D., Mahdavi, B., Zhou, Q., Bouhemhem, D., Ndiaye, A., Guibault, F., Ozell, B., Pelletier, D., Trepanier, J.-Y.: A data-centric distributed framework for MDO management. In: 6th International Conference on Computer Supported Cooperative Work in Design, 279–284, 2001
Stephenson, W.J., Zeune, C.H., Blair, M.: Computational design of an advanced mobility concept. In: 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2006
Mukhopadhyay, V., Hsu, S.-Y., Mason, B.H., Hicks, M.D., Jones, W.T., Sleight, D.W., Chu, J., Spangler, J.L., Kamhawi, H., Dahl, J.L.: Adaptive modeling, engineering analysis and design of advanced aerospace vehicles. In: 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2006
Anemaat, W.A.J., Kaushik, B., Hale, R.D., Ramabadran, N.: AAARaven: knowledge-based aircraft conceptual and preliminary design. In: 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2007
Stephenson, W.J., Veley, D.E., Hill, S.: Composite vehicle design environment. In: 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2007
Kroll, N., Abu-Zurayk, M., Dimitrov, D., Franz, T., Führer, T., Gerhold, T., Görtz, S., Heinrich, R., Ilic, C., Jepsen, J., Jägersküpper, J., Kruse, M., Krumbein, A., Langer, S., Liu, D., Liepelt, R., Reimer, L., Ritter, M., Schwöppe, A., Scherer, J., Spiering, F., Thormann, R., Togiti, V., Vollmer, D., Wendisch, J.-H.: DLR project digital-X: towards virtual aircraft design and flight testing based on high-fidelity methods. CEAS Aeronaut. J. 7(1), 3–27 (2016)
Article
Google Scholar
Seider, D., Litz, M., Schreiber, A., Gerndt, A.: Open source software framework for applications in aeronautics and space. In: IEEE Aerospace Conference, 2012
Seider, D., Basermann, A., Mischke, R., Siggel, M., Tröltzsch, A., Zur, S.: Ad hoc collaborative design with focus on iterative multidisciplinary process chain development applied to thermal management of spacecraft. In: 4th CEAS Air & Space Conference, 2013
TIXI homepage, TIXI. https://github.com/DLR-SC/tixi (2015). Accessed 13 Apr 2015
TIGL homepage, TIGL. https://github.com/DLR-SC/tigl (2015). Accessed 13 Apr 2015
Kunde, M., Schreiber, A.: Advantages of an integrated simulation environment. In: 4th CEAS Air & Space Conference, 869–877, 2013
Scherer, J., Kohlgrüber, D.: Overview of the versatile options to define fuselage structures within the cpacs data format. In: 4th EASN Association International Workshop on Flight Physics & Aircraft Design, 2014
Harbig, K.: Entwicklung eines parametrisierten Netzgenerators zur automatisierten Crashsimulation von Flugzeugrumpfstrukturen. DLR-IB 435-2010/22, 2010
Schwinn, D.B., Kohlgrüber, D., Harbig, K., Scherer, J.: Development of a fully parameterized process chain to evaluate the crash behaviour of transport aircraft in the preliminary design phase. In: Aerospace Structural Impact Dynamics International Conference, 2012
Schwinn, D.B., Scherer, J., Kohlgrüber, D., Harbig, K.: Development of a multidisciplinary process chain for the preliminary design of aircraft structures. In: NAFEMS World Congress, 2013
Scherer, J., Kohlgrüber, D., Dorbath, F., Sorour, M.: A finite element based tool chain for structural sizing of transport aircraft in preliminary aircraft design. In: Deutscher Luft- und Raumfahrtkongress, 2013
Liepelt, R., Chiozzotto, G.P., Schmidt, H.: Variable fidelity loads process in a multidisciplinary aircraft design environment. In: 4th CEAS Air & Space Conference, 822–832, 2013
Dorbath, F., Nagel, B., Gollnick, V.: Implementation of a tool chain for extended physics-based wing mass estimation in early design stages. In: 71th Annual Conference of Society of Allied Weight Engineers, Inc., no. 3547, 2012
Dorbath, F., Nagel, B., Gollnick, V.: Extended physics-based wing mass estimation in early design stages applying automated model generation. Proc. Inst. Mech. Engin. Part G J. Aerosp. Engin. 228(7), 1010–1019 (2014)
Article
Google Scholar
Nagel, B., Kintscher, M., Streit, T.: Active and passive structural measures for aeroelastic winglet design. In: 26th International Congress of the Aeronautical Sciences, 2008
Bruhn, E.F.: Analysis and Design of Flight Vehicle Structures. Tri-State Offset Company, 1973
Jackson, K.E., Boitnott, R.L., Fasanella, E.L., Jones, L.E., Lyle, K.H.: A history of full-scale aircraft and rotorcraft crash testing and simulation at NASA Langley Research Center. In: 4th Triennial International Aircraft and Cabin Safety Research Conference, 2004
Schwinn, D.B.: Integration of crashworthiness aspects into preliminary aircraft design. Appl. Mech. Mater. 598, 146–150 (2014)
Article
Google Scholar
Schwinn, D.B.: Parametrised fuselage modelling to evaluate aircraft crash behaviour in early design stages. Int. J. Crashworthiness 20(5), 413–430 (2015)
Article
Google Scholar
Groenenboom, P.H.L., Siemann, M.H.: Fluid-structure interaction by the mixed SPH-FE method with application to aircraft ditching. Int. J. Multiphysics 9(3), 249–265 (2015)
Article
Google Scholar
Siemann, M.H., Groenenboom, P.H.L.: Modeling and validation of guided ditching tests using a coupled SPH-FE approach. In: 9th international SPHERIC workshop, 2014