Skip to main content

Active flow control system integration into a CFRP flap

Abstract

Investigations in the past show the considerable potential of active flow control (AFC) to enhance the aircraft aerodynamic performance. This publication describes the work carried out regarding the integration of an AFC system into a CFRP flap for Next Generation Aircraft considering operational aspects. Based on a two-stage fluidic AFC actuator, a system integration concept is developed. Robustness, simplicity and maintainability are the main drivers for the integration work. Using genetic and evolutionary multi-objective optimization the most promising flap concept regarding lightweight design and integration is developed at TU Dresden ILR. This concept is numerically sized and designed in detail. The concept feasibility is shown by a 2-m span full-scale demonstrator at Airbus Group Innovations. This demonstrator is successfully tested regarding system operational capability as well as for static and fatigue performance. To investigate the structural influence of AFC blowout slits within the upper flap surface, an extensive static and dynamic coupon test program is conducted at TU Dresden ILK and TU Braunschweig IFL. In parallel, analytic and numeric methods are used to verify stress concentration within the slotted area by TU Dresden ILR.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

References

  1. 1.

    Schmalzel, M., Varghese, P., Wygnanski, I.: Steady and oscillating flow control tests for tilt rotor aircraft, in active flow control. Papers contributed to the conference “active flow control 2006”, notes on numerical fluid mechanics and multidisciplinary design, vol. 95, Berlin, 2006

  2. 2.

    Stanewsky, E., Rosemann, H.: Active flow control applied to military and civil aircraft, RTV/AVT (AGARD). Symposium, Braunschweig, 2000

  3. 3.

    Kibens, V., Bower, W.W.: An overview of active flow control applications at the Boeing Company. 2nd AIAA Flow Control Conference, 2004, Portland, Oregon, AIAA 2004–2624

  4. 4.

    Ciobaca, V., Wild, J.: An overview of recent DLR contributions on active flow-separation control studies for high-lift configurations. Aerosp. Lab J. (6), 1–12 (2013)

  5. 5.

    Goldhammer, M.: The next decade in commercial aircraft aerodynamics—a Boeing perspective. Aerodays 2011, Madrid, Spain, ROI 2009-0501-1167

  6. 6.

    Cattafesta III, L.N., Sheplak, M.: Actuators for active flow control. Annu. Rev. Fluid Mech. 43, 247–272 (2011)

    Article  Google Scholar 

  7. 7.

    Jahanmiri, M.: Active flow control: a review, research report 2010:12. Chalmers University of Technology, Göteborg (2010). ISSN 1652-8549

  8. 8.

    Ternoy, F., Dandois, J., David, F., Pruvost, M: Overview of onera actuators for active flow control. Aerosp. Lab J. (6) (2013)

  9. 9.

    Wang, L., Luo, Z., Xia, Z., Liu, B., Deng, X.: Review of actuators for high speed active flow control. Sci. China Technol. Sci. 55(8), 2225–2240 (2012)

    Article  Google Scholar 

  10. 10.

    Ciobaca, V., Kühn, T., Rudnik, R., Bauer, M., Gölling, B.: Active flow separation control on a high-lift wing-body configuration—part 2: the pulsed blowing application. In: 29th AIAA Applied Aerodynamics Conference, Honolulu, Hawaii, 27–30 June 2011, AIAA 2011-3169

  11. 11.

    Haucke, F., Peltzer, I., Nitsche, W.: Active separation control on a slatless 2D high-lift wing section. In: 26th International Congress of the Aeronautical Sciences, 2008

  12. 12.

    Ciobaca, V.: Validation of numerical simulations for separation control on high-lift configurations. Ph.D. Dissertation, Technische Universität Berlin, ISRN DLR-FB–2014 -11 (2014)

  13. 13.

    Meyer, M., Machunze, W., Bauer, M: Towards the industrial application of active flow control in civil aircraft—an active highlift flap. AIAA Aviation and Aeronautics Forum and Exposition, San Diego (2014)

  14. 14.

    Petz, R., Nitsche, W.: Active separation control on the flap of a two-dimensional generic high-lift configuration. J. Aircr. 44(3), 865–874 (2007)

    Article  Google Scholar 

  15. 15.

    Bauer, M., Peltzer, I., Nitsche, W., Gölling, B.: Active flow control on an industry-relevant civil aircraft half model, vol. 108 of notes on numerical fluid mechanics and multidisciplinary design, pp. 95–107. Springer, Berlin (2010)

  16. 16.

    Bauer, M., Lohse, J., Haucke, F., Nitsche, W.: High-lift performance investigation of a two-element configuration with a two-stage actuator system. AIAA J. 52(6), 1307–1313 (2014)

    Article  Google Scholar 

  17. 17.

    Rädel, M., Wolf, K., Ulbricht, A., Machunze, W., Horst, P., Fabel, T.: JTI clean sky—smart fixed wing aircraft—project AFCIN—periodic report 03/2012, Dresden (2012)

  18. 18.

    Urik, T., Malis, M.: Innovative composite structures for small aircraft. In: Proceedings of the 26th International Congress of the Aeronautical Sciences, Anchorage, ICAS (2008)

  19. 19.

    Rädel, M., Seeger, J., Wolf, K.: A fast method for calculating the mechanical properties of arbitrary multi-material cross sections. DLRK 2014, Augsburg

  20. 20.

    Bailie, J.A., Ley, R.P., Pasricha, A.: A summary and review of composite laminate design guidelines, Task 22, NASA Contract NAS1-19347. NASA Langley Research Center, Hampton (1997)

    Google Scholar 

  21. 21.

    Kaletta, P: Ein Beitrag zur Effizienzsteigerung Evolutionärer Algorithmen zur optimalen Auslegung von Faserverbundstrukturen im Flugzeugbau. PhD thesis, TU Dresden (2006)

  22. 22.

    Seeger, J., Wolf, K.: Multi-objective design of complex aircraft structures using evolutionary algorithms. In: Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, pp. 1153–1164 (2011)

  23. 23.

    Seeger, J., Wolf, K.: Structural optmization of adaptive airfoils using evolutionary algorithms. In: Proceedings of the 1st CEAS European Air and Space Conference, Berlin (2007)

  24. 24.

    Haftka, R., Gürdal, Z.: Elements of Structural Optimization, 3rd ed. Kluwer Academic Publishers, Dordrecht (1991)

  25. 25.

    Cuntze, R.G.: Efficient 3D and 2D failure conditions for UD laminae and their application within the verification of the laminate design. Compos. Sci. Technol. 66, 1081–1096 (2006)

    Article  Google Scholar 

  26. 26.

    Lee, Y.L., Pan, J., Hathaway, R., Barkey, M.: Fatigue Testing and Analysis—Theory and Practice. Elsevier Butterworth-Heinemann, Burlington (2005)

Download references

Acknowledgments

The authors gratefully acknowledge the financial support by the European Union for the project Clean Sky SFWA-WP 1.3.8 AFCIN inside the European Community’s Seventh Framework Program (FP7/2007-2013) for the Clean Sky Joint Technology Initiative. Furthermore, the authors would like to thank Matthias Lengers, Heribert Bieler and Ulrich Scholz (all Airbus Operations GmbH) for their outstanding support. The authors thank the Center for Information Services and High-Performance Computing (ZIH) at TU Dresden for generous allocations of computer time.

Author information

Affiliations

Authors

Corresponding author

Correspondence to W. Machunze.

Additional information

This paper is based on a presentation at the German Aerospace Congress, September 16–18, 2014, Augsburg, Germany.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Machunze, W., Gessler, A., Fabel, T. et al. Active flow control system integration into a CFRP flap. CEAS Aeronaut J 7, 69–81 (2016). https://doi.org/10.1007/s13272-015-0171-2

Download citation

Keywords

  • Active flow control (AFC)
  • Pulsed
  • Unsteady
  • CFRP
  • Flap