Aerodynamic and structural investigation of an active back-flow flap for dynamic stall control

Abstract

The design and experimental investigation of a back-flow flap for helicopter dynamic stall control is described. A spoiler-type flap is designed, and shown by CFD to reduce the pitching moment peak during dynamic stall by 34 %. Initial experiments with a passively actuated flap in a low-speed wind tunnel showed that the opening and closing times for the flap due to the aerodynamic forces are sufficiently short and that the flap is not affected by the inertial forces of the model pitching. The experiments showed the need for a flap restraint, and that an active actuation is needed so that the flap angle is sufficient at the time of stall to have a control effect. Initial demonstrators for the structural concept of the active back-flow flap using glass fiber reinforced polymer and a solid state hinge are presented, showing the possibility of fabrication as an after-market add-on.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Abbreviations

\(\alpha\) :

Angle of attack (\(^\circ\))

\(c\) :

Airfoil chord (=0.300 m)

\(C_{\mathrm{D}}\) :

Drag coefficient

\(C_{\mathrm{L}}\) :

Lift coefficient; mean; peak

\(C_{\mathrm{M}}\) :

Pitching moment coefficient; peak

\(C_{\mathrm{P}}\) :

Pressure coefficient

\(f\) :

Frequency (Hz)

\(M\) :

Mach number

Re:

Reynolds number based on the model chord

\(\rho _{\infty }\) :

Freestream flow density (kg/m\(^3\))

\(t\) :

Time (s)

\(v_{\infty }\) :

Freestream flow velocity (m/s)

\(\omega ^*\) :

Reduced frequency: \(\omega ^*\): \(\omega ^*=2\pi fc/v_{\infty }\)

\(x\), \(y\), \(z\) :

Coordinates in flow direction, breadth and upward (m)

\(y^+\) :

Dimensionless wall distance

References

  1. 1.

    Mai, H., Dietz, G., Geissler, W., Richter, K., Bosbach, J., Richard, H., de Groot, K.: Dynamic stall control by leading edge vortex generators. J. Am. Helicopter Soc. 53(1), 26–36 (2008)

    Article  Google Scholar 

  2. 2.

    Martin, P., Wilson, J., Berry, J., Wong, T., Moulton, M., McVeigh, M.: Passive Control of Compressible Dynamic Stall, AIAA Paper, pp. 2008–7506 (2008)

  3. 3.

    LePape, A., Costes, M., Joubert, G., David, F., Deluc, J.-M.: Experimental study of dynamic stall control using deployable leading-edge vortex generators. AIAA J. 50(10), 2135–2145 (2012)

    Article  Google Scholar 

  4. 4.

    Gardner, A.D., Richter K., Mai, H., Neuhaus, D.: Experimental control of compressible OA209 dynamic stall by air jets. AHS J. 58(4) (2013)

  5. 5.

    Weaver, D., McAlister, K.W., Tso, J.: Control of VR7 Dynamic stall by strong steady blowing. J. Aircr. 41(6) (2004)

  6. 6.

    Kaufmann, K., Gardner, A.D., Richter, K.: Numerical investigations of a back-flow flap for dynamic stall control. In: New results in numerical and experimental fluid mechanics IX, Notes on numerical fluid mechanics and multidisciplinary design, vol. 124, pp. 255–262 (2014)

  7. 7.

    Meyer, R.K.J.: Experimentelle Untersuchungen von Rückstromklappen auf Tragflügeln zur Beeinflussung von Strömungsablösungen. Dissertation, Technische Universität Berlin, Mensch-und-Buch-Verlag (2000)

  8. 8.

    Höfinger, M.: Rotorblatt mit integrierter passiver Oberflächenklappe. Deutsches Patent DE 10 2010 041 111 A1, 22.03.2012 (2012)

  9. 9.

    Gallot, J., Vingut, G., De Paul, M.V., Thibert, J.: Blade profile for rotary wing of an aircraft. United States Patent 4325675, (20.4.1982) (1982)

  10. 10.

    Mulleners, K., Raffel, M.: The onset of dynamic stall revisited. Exp. Fluids 52(3), 779–793 (2012). doi:10.1007/s00348-011-1118-y

    Article  Google Scholar 

  11. 11.

    Gardner, A.D., Richter, K., Rosemann, H.: Numerical investigation of air jets for dynamic stall control on the OA209 airfoil. CEAS Aeronaut. J. 1(1), 69–82 (2011). doi:10.1007/s13272-011-0002-z

    Article  Google Scholar 

  12. 12.

    Schwamborn, D., Gardner, A.D., von Geyr, H., Krumbein, A., Lüdeke, H., Stürmer, A.: Development of the TAU-Code for aerospace applications. In: Proceeding of the 50th NAL INCAST (International Conference on Aerospace Science and Technology), Bangalore, India (2008)

  13. 13.

    Richter, K., Le Pape, A., Knopp, T., Costes, M., Gleize, V., Gardner, A.D.: Improved two-dimensional dynamic stall prediction with structured and hybrid numerical methods. AHS J. 56(4) (2011)

  14. 14.

    Schwarz, T.: The overlapping grid technique for the time accurate simulation of rotorcraft flows. In: 31st ERF, Florence, Italy, 13–15 September (2005)

  15. 15.

    Spalart, P.R., Allmaras, S.R.: A one-equation turbulence model for aerodynamic flows. In: AIAA Paper 92–0439, AIAA 30th Aerospace Sciences Meeting and Exhibit, Reno, Jan 6–9 (1992)

  16. 16.

    Kaufmann, K.: Numerische Untersuchung einer Rückstromklappe zur Dynamic Stall-Kontrolle. Diplomarbeit. Uni, Stuttgart IAG (2012)

  17. 17.

    Gardner, A.D., Richter, K.: Influence of rotation on dynamic stall. AHS J. 58(3) (2013)

  18. 18.

    Wierach, P.: Adaptive, tolerant and efficient composite structures, research in aerospace. In: Wiedemann, M., Sinapius, M. (eds.) Nano-Micro-Macro, pp. 17–28. Springer, Berlin (2012). doi:10.1007/978-3-642-29190-6_2

    Google Scholar 

  19. 19.

    Wierach, P., Riemenschneider, J., Opitz, S., Hoffmann, F.: Adaptive, tolerant and efficient composite structures, research in aerospace. In: Wiedemann, M., Sinapius, M. (eds.) Experimental Investigation of an Active Twist Model Rotor Blade Under Centrifugal Loads, pp. 391–407. Springer, Berlin (2012). doi:10.1007/978-3-642-29190-6_32

    Google Scholar 

  20. 20.

    Wierach, P.: Low profile piezo actuators based on multilayer technology. In: Proceeding of the 17th International Conference on Adaptive Systems and Structures, 2006-10-16–2006-10-19, Taipei, Taiwan (2006)

  21. 21.

    Grote, K.H., Feldhusen, J. (eds.): Dubbel: Taschenbuch für den Maschinenbau, 23rd edn. Springer, Berlin (2012)

    Google Scholar 

  22. 22.

    Opitz, S., Riemenschneider, J., Hoffmann, F., Schneider, O.: Measurement of the dynamic tip twist angles of an active twist model scale rotor blade. In: Proceeding of the 36th European Rotorcraft Forum, 7–9 Sept 2010, Paris (2010)

  23. 23.

    Wierach, P.: Adaptive, tolerant and efficient composite structures, research in aerospace. In: Wiedemann, M., Sinapius, M. (eds.) Piezocomposite Transducers for Adaptive Structures, pp. 29–47. Springer, Berlin (2012). doi:10.1007/978-3-642-29190-6_3

    Google Scholar 

  24. 24.

    Algermissen, S., Keimer, R., Rose, M., Straubel, M., Sinapius, M., Monner, H.P.: Smart-Structures Technology for Parallel Robots. J. Intell. Robotic Syst. 63: 547–574. Springer (2011). doi:10.1007/s10846-010-9522-8. ISSN 0921-0296

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Opitz.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Opitz, S., Gardner, A.D. & Kaufmann, K. Aerodynamic and structural investigation of an active back-flow flap for dynamic stall control. CEAS Aeronaut J 5, 279–291 (2014). https://doi.org/10.1007/s13272-014-0106-3

Download citation

Keywords

  • Back-flow flap
  • Active flap
  • Flow control
  • Solid state hinge
  • Helicopter
  • Rotor blade