CEAS Aeronautical Journal

, Volume 4, Issue 1, pp 35–48 | Cite as

Local interaction simulation approach for modeling wave propagation in composite structures

Original Paper

Abstract

This paper presents a local interaction simulation approach (LISA) numerical method to analyze the guided wave propagation in composite structures. The method is based on recursive iterative equations, derived from the elastodynamic equilibrium equations. Derivation of the iterative equations is presented for a generalized orthotropic medium in a non-principal axis frame with non-uniform spatial discretizations. The new iterative equations have the capability to model generic laminated composite plates. The results show the validation of the numerical simulations through comparisons with experimental studies of laminated composite plates.

Keywords

Structural health monitoring (SHM) Guided waves (GW) Local interaction simulation approach (LISA) Sharp interface model (SIM) Finite difference (FD) Composite plates Wave propagation 

References

  1. 1.
    Agostini, V., Baboux, J., Delsanto, P., Monnier, T., Olivero, D.: Application of lamb waves for the characterization of composite plates. In: AIP Conference Proceedings , vol. 497, pp. 455–460 (1999)Google Scholar
  2. 2.
    Agostini, V., Delsanto, P., Genesio, I., Olivero, D.: Simulation of lamb wave propagation for the characterization of complex structures. IEEE Transact. Ultrason. Ferroelectr. Freq. Control 50(4), 441–448 (2003)CrossRefGoogle Scholar
  3. 3.
    Alleyne, D.N.: The nondestructive testing of plates using ultrasonic lamb waves.Thesis, Imperial College of Science, Technology and Medicine (1991)Google Scholar
  4. 4.
    Auld, B.A.: Acoustic fields and waves in solids. Wiley, New York (1973)Google Scholar
  5. 5.
    Brebbia, C.A., Telles, J.C.F., Wrobel, L.C.: Boundary element techniques: theory and applications in engineering. Springer, Berlin (1984)Google Scholar
  6. 6.
    Cantwell, W.J., Morton, J.: The impact resistance of composite materials a review. Composites 22(5), 347–362 (1991)CrossRefGoogle Scholar
  7. 7.
    Delsanto, P.P., Schechter, R.S., Mignogna, R.B.: Connection machine simulation of ultrasonic wave propagation in materials. iii. the three-dimensional case. Wave Motion 26(4), 329–339 (1997)MATHCrossRefGoogle Scholar
  8. 8.
    Graff, K.F.: Wave motion in elastic solids. Dover Publications, New York (1991)Google Scholar
  9. 9.
    Ihlenburg, F.: Finite element analysis of acoustic scattering. Springer, New York (1998)Google Scholar
  10. 10.
    Lee, B., Staszewski, W.: Modelling of lamb waves for damage detection in metallic structures: part i wave propagation. Smart Mater. Struct. 12(5), 804–814 (2003)CrossRefGoogle Scholar
  11. 11.
    Lee, B., Staszewski, W.: Modelling of lamb waves for damage detection in metallic structures: part ii wave interactions with damage. Smart Mater. Struct. 12((5), 815–824 (2003)CrossRefGoogle Scholar
  12. 12.
    Lih, S.S., Mal, A.: On the accuracy of approximate plate theories for wave field calculations in composite laminates. Wave Motion 21(1), 17–34 (1995)MATHCrossRefGoogle Scholar
  13. 13.
    Moulin, E., Assaad, J., Delebarre, C., Osmont, D.: Modeling of lamb waves generated by integrated transducers in composite plates using a coupled finite element-normal modes expansion method. J. Acoust. Soc. Am. 107(1), 87–94 (2000)CrossRefGoogle Scholar
  14. 14.
    Nadella, K., Salas, K., Cesnik, C.: Characterization of guided-wave propagation in composite plates. In: The Society of Photo-Optical Instrumentation Engineers (SPIE), vol. 7650. San Diego (2010)Google Scholar
  15. 15.
    Nadella, K.S., Cesnik, C.E.S.: Local interaction simulation of guided-wave propagation in composite plates using clover transducer. In: Proceedings of the 8th International Workshop on Structural Health Monitoring, vol. 2, pp. 2529–2536 (2011)Google Scholar
  16. 16.
    Nadella, K.S., Cesnik, C.E.S.: Numerical simulation of wave propagation in composite plates. In: The Society of Photo-Optical Instrumentation Engineers (SPIE), vol. 8348. San Diego (2012)Google Scholar
  17. 17.
    Raghavan, A., Cesnik, C.E.S.: Finite-dimensional piezoelectric transducer modeling for guided wave based structural health monitoring. Smart Mater. Struct. 14(6), 1448–1461 (2005)CrossRefGoogle Scholar
  18. 18.
    Raghavan, A., Cesnik, C.E.S.: Review of guided-wave structural health monitoring. Shock Vib. Dig. 39(2), 91–114 (2007)CrossRefGoogle Scholar
  19. 19.
    Ruzzene, M., Jeong, S.M., Michaels, T.E., Michaels, J.E., Mi, B.: Simulation and measurement of ultrasonic waves in elastic plates using laser vibrometry. In: AIP Conference Proceedings, vol. 760, pp. 172–179 (2005)Google Scholar
  20. 20.
    Salas, K.I.: Guided wave structural health monitoring using clover transducers in composite materials. Smart Mater. Struct. 19(1), 25 (2010)Google Scholar
  21. 21.
    Shorr, B.F. The wave finite element method. Springer, Berlin (2004)Google Scholar
  22. 22.
    Sinor, M.: Numerical modelling and visualisation of elastic wave propagation in arbitrary complex media. In: Proceedings of the Eighth Workshop on Multimedia in Physics Teaching and Learning of the European Physical Society (2004)Google Scholar
  23. 23.
    Sornette, D., Macon, L., Coste, J.: Transfer matrix theory of leaky guided waves. Journal de Physique 49(10), 1683–1689 (1988)CrossRefGoogle Scholar
  24. 24.
    Sundararaman, S., Adams, D.E.: Modeling guided waves for damage identification in isotropic and orthotropic plates using a local interaction simulation approach. J. Vib. Acoustics 130(4), 16 (2008)Google Scholar
  25. 25.
    Sundararaman, S., Adams, D.E.: Accuracy and convergence using a local interaction simulation approach in one, two, and three dimensions. J. Appl. Mech. Transact. ASME 76(3), 1–10 (2009)Google Scholar
  26. 26.
    Virieux, J.: P-sv wave propagation in heterogeneous media: velocity-stress finite-difference method.. Geophysics 51(4), 889–901 (1986)CrossRefGoogle Scholar

Copyright information

© Deutsches Zentrum für Luft- und Raumfahrt e.V. (outside the USA) 2013

Authors and Affiliations

  1. 1.Department of Aerospace EngineeringUniversity of MichiganAnn ArborUSA

Personalised recommendations