CEAS Aeronautical Journal

, Volume 3, Issue 2–4, pp 145–164 | Cite as

Multidisciplinary conceptual design for aircraft with circulation control high-lift systems

  • Christian Werner-Spatz
  • Wolfgang Heinze
  • Peter Horst
  • Rolf Radespiel
Original Paper

Abstract

Active high-lift technologies have often proven their potential in aerodynamic analyses and wind tunnel tests, but have so far played only a minute role in civil production aircraft. This is expected to change in the future only if such technologies can be accounted for early in the aircraft design process. In this paper, the adaptation of a conceptual design process is presented, enabling it to consider circulation control as a high-lift technology. It is shown that the main aerodynamic effects of a blown flap in the boundary layer control regime can be satisfactorily modeled with a potential theory method. Some sample results of the design process indicate a potential for significant reductions of required field length in comparison with today’s aircraft, creating the potential to increase the capacity of the air transportation system, without increasing overall aircraft mass or direct operating cost.

Keywords

Aircraft conceptual design Active high-lift Circulation control Multisiciplinary design High-lift aerodynamics 

List of symbols

A

Cross-section area of BLC exit slot, in m²

A

Speed of sound, in m/s

B

Width, in m

CD0

3D zero-lift drag coefficient

CDi

3D induced drag coefficient

cdF

2D drag coefficient with flap extended

cdF0

2D drag coefficient without flap extension

CL

3D lift coefficient

cl

2D lift coefficient

CM

3D pitching moment coefficient

\( C_{{{\upmu}}} \)

3D blowing momentum coefficient

\( c_{{{\upmu}}} \)

2D blowing momentum coefficient

cp

Pressure coefficient

FF

Wing reference area, in m²

i

Counter over wing sections

j

Index denoting parameters of the BLC jet

L/D

Relation of lift to drag

\( \dot{m} \)

Mass flow, in kg/s

Ma

Mach number

p

Static pressure, in Pa

\( p_{\text{T}} \)

Total pressure, in Pa

q

Dynamic pressure, in Pa

T

Static temperature, in K

TT

Total temperature, in K

tn

Chord length normal to the wing leading edge, in m

V

Velocity, in m/s

\( \alpha \)

Angle of attack, in degrees

\( \gamma \)

Dimensionless circulation

\( \varphi_{ 2 5} \)

Wing sweep angle at quarter-chord, in degrees

\( \eta \)

Dimensionless span coordinate

\( \kappa \)

Ideal gas coefficient

\( \Uplambda \)

Wing aspect ratio

\( \rho \)

Density, in kg/m³

References

  1. 1.
    Warwick, G.: Forward pitch. Aviat. Week Space Technol. 169(15), 22–26 (2008)Google Scholar
  2. 2.
    Werner-Spatz, C.: Flugzeuggesamtentwurf mit Zirkulationskontrolle am Hochauftriebssystem. Ph.D. Dissertation, Technische Universität Braunschweig, Braunschweig, Germany, 2010Google Scholar
  3. 3.
    Rudolph, P.K.: High-lift systems on commercial subsonic airliners, NASA CR-4746 (1996)Google Scholar
  4. 4.
    Woodward, D., and Lean, D., “Where is High-Lift Today? - A Review of Past UK Research Programmes”, High-Lift System Aerodynamics, AGARD CP-515, 1993Google Scholar
  5. 5.
    Werner-Spatz, C., Heinze, W., Horst, P.: Improved representation of high-lift devices for a multidisciplinary conceptual aircraft design process. J. Aircraft 46(6), 1984–1994 (2009). doi:10.2514/1.42845 CrossRefGoogle Scholar
  6. 6.
    Nicolai, L.M.: Fundamentals of aircraft design. METS Inc., San Jose (1975)Google Scholar
  7. 7.
    Torenbeek, E.: Synthesis of subsonic airplane design. Delft University Press, Martinus Nijhoff Publishers, Delft, Den Haag (1982)Google Scholar
  8. 8.
    Raymer, D.P.: Aircraft Design: A Conceptual Approach. AIAA, Reston (2006)Google Scholar
  9. 9.
    Howe, D.: Aircraft Conceptual Design Synthesis. Professional Engineering Publishing, Suffolk (2000)Google Scholar
  10. 10.
    Schlichting, H., Truckenbrodt, E.: Aerodynamik des Flugzeuges. Springer Verlag, Berlin (1967)MATHCrossRefGoogle Scholar
  11. 11.
    McCormick, B.W.: Aerodynamics of V/STOL Flight. Dover Publications, Mineola (1999)Google Scholar
  12. 12.
    Prandtl, L.: Über Flüssigkeitsbewegung bei sehr kleiner Reibung. Verhandlungen des III. Internationalen Mathematischen Kongresses, Heidelberg, Germany (1904)Google Scholar
  13. 13.
    Betz, A.: History of Boundary Layer Control in Germany, Boundary Layer and Flow Control. Pergamon Press, Oxford (1961)Google Scholar
  14. 14.
    Lachmann, G. (ed.): Boundary Layer and Flow Control. Pergamon Press, Oxford (1961)MATHGoogle Scholar
  15. 15.
    Williams, J.: British Research on the Jet-Flap Scheme. Zeitschrift für Flugwissenschaften 6, 170–176 (1958)Google Scholar
  16. 16.
    Williams, J., Butler, S., Wood, M.: The Aerodynamics of Jet Flaps. In: Proceedings of the 2nd International Congress on Aeronautical Sciences, Zurich, Switzerland (1960)Google Scholar
  17. 17.
    Davidson, I.: Some Engineering Problems of the Jet Flap: Boundary Layer and Flow Control. Pergamon Press, Oxford (1961)Google Scholar
  18. 18.
    Spence, D.: The lift coefficient of a thin jet-flapped wing. In: Proceedings of the Royal Society London, (A) 238 (1956)Google Scholar
  19. 19.
    Wygnanski, I., Newman, B.: The effect of jet entrainment on lift and moment for a thin aerofoil with blowing. Aeronaut. Quart. 15, 122–150 (1964)Google Scholar
  20. 20.
    Das, A.: Tragflächentheorie für Tragflügel mit Strahlklappen. Jahrbuch der Wissenschaftlichen Gesellschaft für Luftfahrt e.V., pp. 112–133 (1960)Google Scholar
  21. 21.
    Gratzer, L.: Analysis of Transport Applications for High-Lift Schemes. Assessment of Lift Augmentation Devices, AGARD LS-43 (1971)Google Scholar
  22. 22.
    Roberts, L.: Short-Haul transportation in the 1980s. STOL Technology, NASA SP-320 (1972)Google Scholar
  23. 23.
    Quigley, H.C., Vomakse, R.F.: Preliminary Results of Flight Tests of the Augmentor-Wing Jet STOL Research Aircraft. STOL Technology, NASA SP-320 (1972)Google Scholar
  24. 24.
    Whittley, D.: An Update of the Canada/USA. Augmentor-Wing Project. Improvement of Aerodynamic Performance Through Boundary Layer Control and High Lift Systems, AGARD CP-365 (1984)Google Scholar
  25. 25.
    Anon: Powered-Lift Aerodynamics and Acoustics, NASA SP-406 (1976)Google Scholar
  26. 26.
    Englar, R.J.: Circulation control for high lift and drag generation on STOL aircraft. J. Aircraft 12(5), 457–463 (1975)CrossRefGoogle Scholar
  27. 27.
    Wood, N., Nielsen, J.: Circulation control airfoils past, present, future. In: Proceedings of the 23rd AIAA Aerospace Sciences Meeting, Reno, NV (1985)Google Scholar
  28. 28.
    Anon: Proceedings of the Circulation Control Workshop, NASA CP-2432 (1986)Google Scholar
  29. 29.
    Jones, G.S., Joslin, R.D. (ed.): Proceedings of the 2004 NASA/ONR Circulation Control Workshop, NASA CP-2005-213509 (2005)Google Scholar
  30. 30.
    Levinsky, E.S., Ramsey, J.C.: Methodology for estimating STOL aircraft high lift systems characteristics. AIAA Paper 1972–1779 (1972)Google Scholar
  31. 31.
    Hooper, J., White, E., Hillier, H.: Lift-augmentation devices and their effect on the engine. In: Assessment of Lift Augmentation Devices, AGARD LS-43 (1971)Google Scholar
  32. 32.
    Conlon, J.A., Bowles, J.V.: Powered lift and mechanical flap concepts for civil short-haul aircraft. J. Aircraft 15(2), 168–174 (1978)Google Scholar
  33. 33.
    Anders, S.G., Sellers, W.L.I., Washburn, A.E.: Active flow control activities at NASA Langley. In: Proceedings of the 2nd AIAA Flow Control Conference, Portland, OR, AIAA (2004)Google Scholar
  34. 34.
    Kibens, V., Bower, W.W.: An overview of active flow control applications at The Boeing Company. In: Proceedings of the 2nd AIAA Flow Control Conference, Portland, OR, AIAA (2004)Google Scholar
  35. 35.
    Hak, M.G.: Flow control: the future. J. Aircraft 38(3), 402–418 (2001)CrossRefGoogle Scholar
  36. 36.
    Shmilovich, A., Yadlin, Y.: Flow control for the systematic buildup of high-lift systems. J. Aircraft 45(5), 1680–1688 (2008)CrossRefGoogle Scholar
  37. 37.
    Meunier, M., Brunet, V.: High-lift devices performance enhancement using mechanical and air-jet vortex generators. J. Aircraft 45(6), 2049–2061 (2008)CrossRefGoogle Scholar
  38. 38.
    Radespiel, R., Pfingsten, K.-C., Jensch, C.: Flow analysis of augmented high-lift systems. In: Radespiel, R., Rossow, C.-C., Brinkmann, B. (eds.) Hermann Schlichting—100 Years. Scientific Colloquium Celebrating the Anniversary of his Birthday, Braunschweig, Germany 2007. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 102. Springer-Verlag, Berlin. ISBN 978-3-540-95997-7 (2009)Google Scholar
  39. 39.
    Pfingsten, K.-C., Cecora, R.D., Radespiel, R.: An experimental investigation of a gapless high-lift system using circulation control. In: Proceedings KATnet II Conference on Key Aerodynamic Technologies, Bremen, Germany (2009)Google Scholar
  40. 40.
    Jensch, C., Pfingsten, K.C., Radespiel, R., Schuermann, M., Haupt, M., Bauss, S.: Design Aspects of a Gapless High-Lift System With Active Blowing, Deutscher Luft- und Raumfahrtkongress, Aachen, Germany (2009)Google Scholar
  41. 41.
    Bushnell, D.M.: Application Frontiers of “Designer Fluid Mechanics”—Vision Versus Reality”, AIAA Paper 97-2110 (1997)Google Scholar
  42. 42.
    Sellers, W.L.I., Singer, B.A., Leavitt, L.D.: Aerodynamics for Revolutionary Air Vehicles. In: Proceedings of the 21st Applied Aerodynamics Conference, Orlando, FL (2003)Google Scholar
  43. 43.
    Roskam, J.: Airplane Design. Design, Analysis and Research Corporation, Lawrence (1997)Google Scholar
  44. 44.
    Finck, R.D.: USAF (United States Air Force) Stability and Control DATCOM (Data Compendium). McDonnell Aircraft Co., St. Louis (1978)Google Scholar
  45. 45.
    Pepper, R., van Dam, C., Gelhausen, P.: Design methodology for high-lift systems on subsonic transport aircraft. In: Proceedings of the 6th AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Bellevue, WA (1996)Google Scholar
  46. 46.
    de Mello, R.S., Soviero, P.A.O.: A simplified conceptual design high-lift methodology for transport aircraft. In: Proceedings of the 22nd AIAA Applied Aerodynamics Conference and Exhibit, Providence, RI (2004)Google Scholar
  47. 47.
    Keen, E.B., Mason, W.H.: A conceptual design methodology for predicting the aerodynamics of upper surface blowing on airfoils and wings. In: Proceedings of the 23rd AIAA Applied Aerodynamics Conference, Toronto, Canada (2005)Google Scholar
  48. 48.
    Kehse, T.: Gesamtentwurf von Flugzeugen mit Hochauftriebshilfen nach dem Prinzip des Upper Surface Blowing. Deutscher Luft- und Raumfahrtkongress 2008. Darmstadt, Germany (2008)Google Scholar
  49. 49.
    Kirby, M.R., Mavris, D.N.: Forecasting technology uncertainty in preliminary aircraft design. In: Proceedings of the 1999 SAE/AIAA World Aviation Conference, San Francisco, CA (1999)Google Scholar
  50. 50.
    Mavris, D.N., Kirby, M.R.: Takeoff/Landing Assessment of an HSCT With Pneumatic Lift Augmentation. AIAA Paper 99-0534 (1999)Google Scholar
  51. 51.
    Gologan, C., Stagliano, F., Steiner, H.-J., Seifert, J.: Vergleich von kurzstartfähigen Regionaljets mit aktiven Hochauftriebssystemen. Deutscher Luft- und Raumfahrtkongress 2009, Aachen, Germany (2009)Google Scholar
  52. 52.
    Gologan, C., Stagliano, F., Schmitt, D.: Impact of ESTOL capability on the mission fuel burn of regional jets. In: Proceedings of the 9th AIAA Aviation Technology, Integration, and Operations Conference (ATIO), Hilton Head, SC (2009)Google Scholar
  53. 53.
    Poisson-Quinton, P., Lepage, L.: Survey of French Research on the Control of Boundary Layer and Circulation, Boundary Layer and Flow Control. Pergamon Press, Oxford (1961)Google Scholar
  54. 54.
    Attinello, J.S.: Design and Engineering Features of Flap Blowing Installations, Boundary Layer and Flow Control. Pergamon Press, Oxford (1961)Google Scholar
  55. 55.
    Thomas, F.: Untersuchungen über die Erhöhung des Auftriebes von Tragflügeln mittels Grenzschichtbeeinflussung durch Ausblasen. Ph.D. Dissertation, Technische Hochschule Carolo-Wilhelmina zu Braunschweig, Braunschweig, Germany (1962)Google Scholar
  56. 56.
    Englar, R.J.: Overview of Circulation Control Pneumatic Aerodynamics: Blown Force and Moment Augmentation and Modification as Applied Primarily to Fixed-Wing Aircraft, Applications of Circulation Control Technology. AIAA, Reston (2006)Google Scholar
  57. 57.
    Werner-Westphal, C., Heinze, W., Horst, P.: Structural sizing for an unconventional, environment-friendly aircraft configuration within integrated conceptual design. Aerosp. Sci. Technol. 12(2), 184–194 (2008). doi:10.1016/j.ast.2007.05.006 CrossRefGoogle Scholar
  58. 58.
    Horstmann, K.-H.: Ein Mehrfach-Traglinienverfahren und seine Verwendung für Entwurf und Nachrechnung nichtplanarer Flügelanordnungen. Ph.D. Dissertation, Technische Universität Braunschweig, Braunschweig, Germany (1987)Google Scholar
  59. 59.
    Pfingsten, K.-C., Jensch, C., Körber, K.W., Radespiel, R.: Numerical simulation of the flow around circulation control airfoils In: 1st CEAS European Air and Space Conference, Berlin, Germany (2007)Google Scholar
  60. 60.
    Küchemann, D.: The aerodynamic design of aircraft: a detailed introductionto the current aerodynamic knowledge and practical guide to the solution of aircraft design problems. Pergamon Press, Oxford (1978)Google Scholar
  61. 61.
    Büscher, A.: “Flügelendformen zur Leistungssteigerung eines Langstreckenflugzeugs“. Technische Universität Braunschweig, Braunschweig, Germany, Ph.D. Dissertation (2008)Google Scholar
  62. 62.
    Katz, J., Plotkin, A.: Low-Speed Aerodynamics. McGraw-Hill, New York (1991)Google Scholar
  63. 63.
    Koeppen, C.: “Methodik zur modellbasierten Prognose von Flugzeugsystemparametern im Vorentwurf von Verkehrsflugzeugen“. Technische Universität Hamburg-Harburg, Ph.D. Dissertation (2006)Google Scholar
  64. 64.
    Mattingly, J.D.: Aircraft Engine Design, AIAA Education Series, Washington (1987)Google Scholar
  65. 65.
    Henke, R., Lammering, T., Anton, E.: Impact of an innovative quiet regional aircraft on the air transportation system. J. Aircraft 47(3), 875–886 (2010)CrossRefGoogle Scholar
  66. 66.
    Loth, J.L.: Why have only two circulation-controlled STOL aircraft been built and flown in years 1974–2004. In: Proceedings of the 2004 NASA/ONR Circulation Control Workshop, Hampton (2005)Google Scholar

Copyright information

© Deutsches Zentrum für Luft- und Raumfahrt e.V. 2012

Authors and Affiliations

  • Christian Werner-Spatz
    • 1
  • Wolfgang Heinze
    • 1
  • Peter Horst
    • 1
  • Rolf Radespiel
    • 2
  1. 1.Institute of Aircraft Design and Lightweight StructuresTechnische Universitaet BraunschweigBraunschweigGermany
  2. 2.Institute of Fluid MechanicsTechnische Universitaet BraunschweigBraunschweigGermany

Personalised recommendations