Skip to main content
Log in

ALLFlight: tackling the brownout problem

  • Original Paper
  • Published:
CEAS Aeronautical Journal Aims and scope Submit manuscript

Abstract

In 2008, the German Aerospace Center (DLR) started the project ALLFlight (Assisted Low Level Flight and Landing on Unprepared Landing Sites). The aim of the program is to integrate a full scale enhanced vision sensor suite in DLR’s research helicopter EC135. The sensor suite consists of a variety of imaging sensors, including a color TV camera and an uncooled thermal infrared camera. Two different ranging sensors are also part of the sensor suite: an optical radar scanner and a millimeter wave radar system. Both radar systems are equipped with specialized software for experimental modes, such as terrain mapping and ground scanning. To be able to process and display the enormous amount of data generated by these sensors, a compact high performance sensor co-computer system (SCC) has been designed and set up. It is built to be easily installable in the helicopter’s cargo bay. We describe the high performance, distributed data acquisition, recording, processing, and fusion software architecture that has been developed and implemented during the first project year. Furthermore, this paper describes the challenging mechanical integration of such a comprehensive sensor suite in the EC135 and explains the architectural hard- and software concept and its implementation in the SCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Helicopter Association International: Five-year comparative U.S. civil helicopter safety trends, Through 4th quarter, January 1–December 31, 2008–2004. http://www.rotor.com (2008)

  2. NTSB: Accidents, fatalities, and rates, 1988 through 2007, for U.S. air carriers operating under 14 CFR 121, scheduled and nonscheduled service (airlines). http://www.ntsb.gov (2008)

  3. Korn, B.R.: Combining enhanced and synthetic vision: DLR’s project ADVISE-PRO. In: Human Factors and Medical Aspects of Day/Night All Weather Operations: Current Issues and Future Challenges, vol. RTO-MP-HFM-141 (2007)

  4. Korn, B., Döhler, H.U.: A system is more than the sum of its parts—conclusion of DLR’s enhanced vision project ADVISE-PRO. In: 25th Digital Avionics Systems Conference, pp. 1–8. IEEE/AIAA . doi:10.1109/DASC.2006.313705 (2006)

  5. Doehler, H.U., Korn, B.: Vermessungsverfahren zur Flug- und Fahrzeugführung.German Patent Application, DE10305993B4 (2006)

  6. Swenson, R.: AFRL develops partial solution to helicopter brownout. http://www.eglin.af.mil/news/story.asp?id=123052402 (2007)

  7. Flying blind in Iraq: U.S. helicopters navigate real desert storms. http://www.popularmechanics.com/technology/military_law/4199189.html (2006)

  8. Gosch, D.: Rockwell Collins and OADS LandSafe system offers helicopter brownout solution. http://www.rockwellcollins.com/news/page10549.html (2008)

  9. Martin, C.: In the thick of it all—surviving the brownout. Aviation Aftermarket Defence Magazine (2007)

  10. Honeywell’s synthetic vision system demonstrates outstanding performance on black hawk helicopter. http://www51.honeywell.com/aero/common/documents/Aerohomepage-documents/Sandblaster_Press_Release.pdf (2009)

  11. Judge, J.H., Occhiato, J.J., Stiles, L., Sahasrabudhe, V., Macisaac, M.A.: Technical design concepts to improve helicopter obstacle avoidance and operations in brownout conditions. US-Patent application, US7106217B2 (2004)

  12. Scherbarth, S.: Method of pilot support in landing helicopters in visual flight under brownout or whiteout conditions. US-Patent, US2006/0087452A1 (2005)

  13. Pfenninger, T.: Landehilfesystem für senkrecht startende und landende Luftfahrzeuge, insbesondere Helikopter. German Patent Application, DE102007019808A1 (2007)

  14. Luan, X., Schwarte, R., Zhang, Z., Xu, Z., Heinol, H.G., Buxbaum, B., Ringbeck, T., Hess, H.: Three-dimensional intelligent sensing based on the PMD technology. In: Sensors, Systems, and Next-Generation Satellites V, pp. 482–487 (2001)

  15. Kaletka, J., Kurscheid, H., Butter, U.: FHS, the new research helicopter: Ready for service. In: Proc. 29. European Rotorcraft Forum (2003)

  16. Lueken, T., Korn, B.: PAVE: A prototype of a helicopter pilot assistant system. In: Proc. 33. European Rotorcraft Forum (2007)

  17. von Gruenhagen, W., Abildgaard, M., Muellhaeuser, M.: Active sidesticks integrated in DLR’s flying simulator FHS. In: ICEAE2009 (IISc Centenary International Conference and Exhibition on Aerospace Engineering) (2009)

  18. Lantzsch, R., Hamers, M., Wolfram, J.: Handling the air resonance mode for flight control and handling qualities evaluations on the DLR research helicopter FHS. In: Rotorcraft Handling Qualities Conference (2008)

  19. Preissner, J.: The influence of the atmosphere on passive radiometric measurements. In: AGARD Conference on Millimeter and Submillimeter Wave Propagation and Circuits, vol. 245 (1978)

  20. Seidel, C., Samuelis, C., Wegner, M., Münsterer, T., Rumpf, T., Schwartz, I.: Novel approaches to helicopter obstacle warning. In: G.W. Kamerman; M.D. Turner (eds.) Laser Radar Technology and Applications XI. In: Proceedings of the SPIE, vol. 6214, p. 621406 (2006)

  21. Münsterer, T., Kiehlhorn, P., Rumpf, T.: Degraded vision landing aid system for helicopter. In: Operating Helicopter in Degraded Visual Environment. Royal Aeronautical Society (2010)

  22. Szoboszlay, Z., Neiswander, G., Turpin, T.: Pilot briefing package linear vs. log scale for BOSS symbology. Aviation and Missile Research, Development and Engineering Center (2010)

  23. Pesce, M.D.: Programming Microsoft DirectShow for Digital Video and Television. Microsoft (2003)

  24. Abildgaard, M., Binet, L.: Active sidesticks used for VRS avoidance. In: Proceedings of the 35th European Rotorcraft Forum (2009)

  25. Doehler, H.U., Peinecke, N.: Image-based drift and height estimation for helicopter landing in brownout. In: Image Analysis and Recognition, International Conference ICIAR 2010, Springer Lecture Notes in Computer Science. Springer, Berlin (2010)

  26. Peinecke, N., Korn, B.R.: Rapid self organizing maps for terrain surface reconstruction. In: Güell, J.J., Uijt de Haag, M. (eds.) SPIE Enhanced and Synthetic Vision 2009. In: Proceedings of the SPIE, vol. 7328, p. 732807 (2009)

  27. Peinecke, N., Lueken, T., Korn, B.: Lidar simulation using graphics hardware acceleration. In: Moore, J.R. (ed.) 27th Digital Avionics Systems Conference (DASC), pp. 4.D.4–1–4.D.4–8. IEEE/AIAA (2008). doi:10.1109/DASC.2008.4702838

  28. Peinecke, N., Doehler, H.U., Korn, B.R.: Simulation of imaging radar using graphics hardware acceleration. In: Enhanced and Synthetic Vision, vol. 6957, p. 695720 (2008)

  29. Peinecke, N., Groll, E.: Integration of a 2.5D radar simulation in a sensor simulation suite. In: Proceedings of 29th DASC. IEEE Press (2010)

Download references

Acknowledgments

This work was sponsored by the German Federal Office of Defense Technology and Procurement (BWB) within the following projects: “Erhöhung der Allwetterfähigkeit durch die Entwicklung eines Flugführungssystems für Hubschrauber”, “Einsatzbereich Systemtechnik FHS und Technologiebewertung im Fluge”, “Leistungserweiterung FHS”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Peinecke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lueken, T., Peinecke, N., Doehler, HU. et al. ALLFlight: tackling the brownout problem. CEAS Aeronaut J 3, 1–15 (2012). https://doi.org/10.1007/s13272-011-0027-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13272-011-0027-3

Keywords

Navigation