CEAS Aeronautical Journal

, Volume 2, Issue 1–4, pp 111–123 | Cite as

Development and application of a pre-design tool for aero-engine combustors

Original Paper

Abstract

A software tool was developed to design aero-engine combustors on a preliminary level. Only a small set of input parameters is required to design conventional as well as lean combustors. During the design calculation the combustor contour, the geometry of the desired cooling concept and the air flow distribution within the combustor are optimized. Optimization targets are to minimize the cooling air consumption with respect to the material temperature limits and to reach homogeneous material temperatures as well as a stable combustion. In the case of a staged burner the burner air and fuel fractions are optimized regarding minimal NOx production (qualitative) for the design condition. Off-design calculations on the basis of designed combustors can be executed for engine conditions other than take-off to calculate the altered conditions within the combustor. This paper shows the design and off-design process of the combustor tool in detail. In a second part application examples are given. The presented results show the capabilities of the tool for the pre-design of lean combustors with respect to the trade-off between the reduction of NOx emissions and the reduction of the fuel consumption as well as the capabilities for identifying potential cooling issues.

Keywords

Aero engine Gas turbine Combustor Preliminary design Effusion cooling 

List of symbols

cd

Discharge coefficient (–)

d

Diameter (m)

Ma

Mach number (–)

m = ρAiruAir/(ρGasuGas)

Blowing ratio (–)

p

Pressure (Pa)

Δpst

Static pressure drop (Pa)

Δpst,rel = Δpst/p3

Relative static pressure drop (–)

Rs

Specific gas constant (J/kg/K)

Re

Reynolds number (–)

r

Radius (m)

s

Slot height (m)

T

Temperature (K)

t

Thickness (m)

u

Velocity (m/s)

V

Volume (m3)

W

Mass flow (kg/s)

μ

Dynamic viscosity (Ns/m2)

ρ

Density (kg/m3)

φ

Empirical factor (–)

Subscripts

C

Combustor

Cond

Conduction

Conv

Convection

Eff

Effusion

Rad

Radiation

Stoich

Stoichiometric

Up

Upstream

3

Condition upstream the combustor

4

Condition downstream the combustor

References

  1. 1.
    Kurzke, J.: Advanced user friendly gas turbine performance calculations on a personal computer. ASME Paper 95-GT-147 (1995)Google Scholar
  2. 2.
    Visser, W.P.J., Kogenhop, O., Oostveen, M.: A generic approach for gas turbine adaptive modelling. ASME Paper 2004-GT-53721 (2004)Google Scholar
  3. 3.
    Alexiou, A., Baalbergen, E.H., Kogenhop, O., Mathioudakis, K., Arendsen, P.: Advanced capabilities for gas turbine engine performance simulations. ASME Paper 2007-GT-27086 (2007)Google Scholar
  4. 4.
    Deidewig, F.: Ermittlung der Schadstoffemissionen im Unter- und Überschallflug. Institut für Antriebstechnik, DLR Forschungsbericht 98–10, ISSN 1434-8454 (1998)Google Scholar
  5. 5.
    Litz, M., Seider, D., Bachmann, A., Kunde, M., Otten, T.: Integration framework for preliminary design tool chains. DLRK2011-241239, DGLR, Deutscher Luft- und Raumfahrtkongress Bremen, 27–29 September (2011)Google Scholar
  6. 6.
    Lefebvre, A.H.: Gas turbine combustion. McGraw-Hill Book Company, ISBN 0-07-037029-X (1983)Google Scholar
  7. 7.
    Dodds, W.J., Bahr, D. W.: Combustion system design. In: Mellor A.M (ed.) Design of modern gas turbine combustors. Academic Press, ISBN 0-12-490055-0 (1990)Google Scholar
  8. 8.
    Stuttaford, P.J.: Preliminary gas turbine combustor design using a network approach. Ph.D. thesis, Cranfield University, England (1997)Google Scholar
  9. 9.
    Rogero, J.M.: A genetic algorithms based optimisation tool for the preliminary design of gas turbine combustors. Ph.D. thesis, Cranfield University, England (2002)Google Scholar
  10. 10.
    Wulff, A.: Entwicklung eines Verbrennungsmodells für Brennkammern von Fluggasturbinen. Dissertation, TU Berlin, Germany (2001)Google Scholar
  11. 11.
    Tilston, J., Larkman, J., Plohr, M., Doepelheuer, A., Lischer, T., Zarzalis, N.: Future engine cycle prediction and emissions study. GRD1-2000-25218 (CYPRESS) final publishable report (2003)Google Scholar
  12. 12.
    Pegemanyfar, N., Pfitzner, M., Eggels, R., von der Bank, R., Zedda, M.: Development of an automated preliminary combustion chamber design tool. ASME Paper GT2006-90430 (2006)Google Scholar
  13. 13.
    Pegemanyfar, N., Pfitzner, M., Surace, M.: Automated CFD analysis within the preliminary combustor design system PRECODES utilizing improved cooling models. ASME Paper GT2007-27409 (2007)Google Scholar
  14. 14.
    Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans Evol Comput 3(4), 257–270 (1999)CrossRefGoogle Scholar
  15. 15.
    Storn, R.: On the usage of differential evolution for function optimization. NAFIPS 1996, Berkeley, pp. 519–523 (1996)Google Scholar
  16. 16.
    Hansen, N., Niederberger, A., Guzzella, L., Koumoutsakos, P.: A method for handling uncertainty in evolutionary optimization with an application to feedback control of combustion. IEEE Trans Evol Comput 13(1), 180–197 (2009)CrossRefGoogle Scholar
  17. 17.
    Blomeyer, M.: Entwicklung von Auslegungskriterien für die Mischzone einer luftgestuften Gasturbinen-Ringbrennkammer. Fortschritt-Berichte VDI, Energietechnik Reihe 6 Nr. 427, ISBN 3-18-342706-0 (1999)Google Scholar
  18. 18.
    Bräunling, W.J.G.: Flugzeugtriebwerke. Springer, ISBN 3-540-67585-X (2004)Google Scholar
  19. 19.
    Goodwin, D.: Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. Caltech, Pasadena (2009). http://code.google.com/p/cantera
  20. 20.
    Lee, C.-M., Kundu, K., Ghorashi, B.: Simplified Jet-A kinetic mechanism for combustion application. NASA-TM-105940 (1993)Google Scholar
  21. 21.
    Lazik, W., Doerr, Th., Bake, S., Bank, R.v.d., Rackwitz, L.: Development of lean-burn low-NOx combustion technology at Rolls-Royce Deutschland. ASME Paper GT2008-51115 (2008)Google Scholar
  22. 22.
    Lefebvre, A.H.: Flame radiation in gas turbine combustion chambers. Int J Heat Mass Transf 27, 1493–1510 (1984)CrossRefGoogle Scholar
  23. 23.
    Andreini, A., Ceccherini, A., Facchini, B., Turrini, F., Vitale, I.: Assessment of a set of numerical tools for the design of aero-engines combustors: study of a tubular test rig. ASME Paper GT2009-59539 (2009)Google Scholar
  24. 24.
    Baldauf, S., Scheurlen, M., Schulz, A., Wittig, S.: Heat flux reduction from film cooling and correlation of heat transfer coefficients from thermographic measurements at engine like conditions. ASME Paper GT-2002-30181 (2002)Google Scholar
  25. 25.
    Baldauf, S., Scheurlen, M., Schulz, A., Wittig, S.: Correlation of film cooling effectiveness from thermographic measurements at engine like conditions. ASME Paper GT-2002-30180 (2002)Google Scholar
  26. 26.
    Martiny, M., Schulz, A., Wittig, S.: Mathematical model describing the coupled heat transfer in effusion cooled combustor walls. ASME Paper 97-GT-329 (1997)Google Scholar
  27. 27.
    Hausen, H.: Extended equation for heat transfer in tubes at turbulent flow. In: Wärme- und Stoffübertragung 7, pp. 222–225. Springer (1974)Google Scholar
  28. 28.
    Florschuetz, L.W., Metzger, D.E., Truman, C.R.: Jet array impingement with crossflow—correlation of streamwise resolved flow and heat transfer distributions. NASA Contractor Report 3373 (1981)Google Scholar
  29. 29.
    Metzger, D.E., Fan, Z.X., Shepard, W.B.: Pressure loss and heat transfer through multiple rows of short pin fins. Heat Transf 3, 137–142 (1982)Google Scholar
  30. 30.
    Tacina, K.M., Lee, C.-M., Wey, C.: NASA Glenn high pressure low NOx emissions research. NASA/TM—2008-214974Google Scholar
  31. 31.
    Baughcum, S.L., Tritz, T.G., Henderson, S. C., Pickett, D.C.: Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA Contractor Report 4700 (1996)Google Scholar
  32. 32.
    Döpelheuer, A.: Anwendungsorientierte Verfahren zur Bestimmung von CO, HC und Ruß aus Luftfahrttriebwerken. Dissertation Ruhr-Universität Bochum (2002). DLR Forschungsbericht 2002Google Scholar
  33. 33.
    Lefebvre, A.H.: Fuel effects on gas turbine combustion-liner temperature, pattern factor, and pollutant emissions. J Aircr 21(11), 887–898 (1984)CrossRefGoogle Scholar
  34. 34.
    Lee, S.H., Le Dilosquer, M., Singh, R., Rycroft, M.J.: Further considerations of engine emissions from subsonic aircraft at cruise altitude. Atmos Environ 30(22), 3689–3695 (1996)CrossRefGoogle Scholar
  35. 35.
    Rizk, N.H., Mongia, H.C.: Emissions predictions of different gas turbine combustors. AIAA 94-0118 (1994)Google Scholar
  36. 36.
    Allaire, D.L.: A physics-based emissions model for aircraft gas turbine combustors. MIT Libraries (2006). http://hdl.handle.net/1721.1/35584
  37. 37.
    Martiny, M.: Wärmeübergang in effusionsgekühlten Flammrohrwänden. Dissertation Universität Karlsruhe, Cuvillier (1999)Google Scholar
  38. 38.
    Gerendas, M., Cadoret, Y., Wilhelmi, C., Machry, T., Knoche, R., Behrendt, T., Aumeier, T., Denis, S., Göring, J., Koch, D., Tushtev, K.: Improvement of oxide/oxide CMC and development of combustor and turbine components in the HIPOC program. ASME GT2011-45460 (2011)Google Scholar

Copyright information

© Deutsches Zentrum für Luft- und Raumfahrt e.V. 2011

Authors and Affiliations

  1. 1.German Aerospace Center DLRInstitute of Propulsion TechnologyCologneGermany

Personalised recommendations