CEAS Aeronautical Journal

, 1:69 | Cite as

Numerical investigation of air jets for dynamic stall control on the OA209 airfoil

Original Paper


The design and numerical investigation of constant blowing air jets as fluidic control devices for helicopter dynamic stall control is described. Prospective control devices were first investigated using 3D RANS computations to identify effective configurations and reject ineffective configurations. Following this, URANS investigations on the dynamically pitching OA209 airfoil verified that configurations had been selected which reduced the peaks in pitching moment and drag while preserving at least the mean lift and drag from the clean wing. Two configurations using jets at 10% chord on the airfoil top were identified, and one configuration using a tangential slot at 10% chord on the airfoil top, with each configuration evaluated for two jet total pressures. For the best configuration, a reduction in the pitching moment peak of 85% and in the drag peak of 78% were observed, together with a 42% reduction in the mean drag over the unsteady pitching cycle.


Helicopter blade CFD Flow control Dynamic stall Jets TAU 


  1. 1.
    Bechert, D.W., Stanewsky, E., Hage, W.: Windkanalmessungen an einem Transsonik-Flügel mit Strömungsbeeinflussenden Massnahmen. DLR-IB 223-99C05 (1998)Google Scholar
  2. 2.
    Chandrasekhara, M.S., Wilder, M.C., Carr, L.W.: Competing mechanisms of compressible dynamic stall. AIAA J. 36(3), 387–393 (1998)CrossRefGoogle Scholar
  3. 3.
    Dietz, G.,, Mai, H., Geissler, W.: Auftriebsfläche mit verbessertem Ablöseverhalten bei stark veränderlichem Anstellwinkel. European Patent EP 1 714 869 A1. 25 October 2006Google Scholar
  4. 4.
    Edwards, J.R., Chandra, S.: Comparison of Eddy viscosity-transport turbulence models for three-dimensional, shock-separated flowfields. AIAA J. 34(4), 756–763 (1996)Google Scholar
  5. 5.
    Gallot, J., Vingut, G., De Paul, M.V., Thibert, J.: Blade profile for rotary wing of an aircraft. United States Patent 4325675. 20 April 1982Google Scholar
  6. 6.
    Gardner, A.D., Richter, K., Rosemann, H.: Prediction of the wind tunnel sidewall effect for the iGREEN wing-tailplane interference experiment. STAB2008, Aachen (2008)Google Scholar
  7. 7.
    Gardner, A.D.: Numerical investigation of air jets for dynamic stall control on the OA209 airfoil. DLR-IB 224-2009 A32 (2009)Google Scholar
  8. 8.
    Geissler, W., Dietz, G., Mai, H., Bosbach, J., Richard, H.: Dynamic stall and its passive control investigations on the OA209 airfoil section. In: 31th European Rotorcraft Forum, Florence, Italy (2005)Google Scholar
  9. 9.
    Geissler, W., Haselmeyer, H.: Investigation of dynamic stall on-set. In: Aerospace Science and Technology. Elsevier Masson SAS, pp. 590–600 (2006)Google Scholar
  10. 10.
    Gerhold, T., Friedrich, O., Evans, J., Galle, M.: Calculation of complex three-dimensional configurations employing the DLR-TAU-code. AIAA-paper 97-0167 (1997)Google Scholar
  11. 11.
    Heine, B., Mulleners, K., Gardner, A., Mai, H.: On the effects of leading edge vortex generators on an OA209 airfoil. ODAS2009 (2009)Google Scholar
  12. 12.
    Mai, H., Dietz, G., Geissler, W., Richter, K., Bosbach, J., Richard, H., de Groot, K.: Dynamic stall control by leading edge vortex generators. J. Am. Helicopter Soc. 53(1), 26–36 (2008)CrossRefGoogle Scholar
  13. 13.
    Mavriplis, D.J., Jameson, A., Martinelli, L.: Multigrid solution of the Navier-Stokes equations on triangular meshes. ICASE-report no. 89-35 (1989)Google Scholar
  14. 14.
    McCroskey, M.C., McAlister, K.W., Carr, L.W., Pucci, S.L.: An Experimental Study of Dynamic Stall on Advanced Airfoil Sections, vol. 1. Summary of the Experiment. NACA-TM 84245 (1982)Google Scholar
  15. 15.
    Meyer, R.K.J.: Experimentelle Untersuchungen von Rückstromklappen auf Tragflügeln zur Beeinflussung von Strömungsablösungen. Dissertation, Technische Üniversität Berlin, FB10 (2000)Google Scholar
  16. 16.
    Mulleners, K., Henning, A., Mai, A., Raffel, M., Le Pape, A., Costes, M.: Investigation of the unsteady flow development over a pitching airfoil by means of TR-PIV. AIAA 2009–3504 (2009)Google Scholar
  17. 17.
    Neuhaus, D.: Magnetisch betätigbares Ventil. Deutsches Patent DE 10 2005 035 878. 31 August 2006Google Scholar
  18. 18.
    Prince, S.A., Khodagolian, V., Singh, C.: Aerodynamic stall suppression on airfoil sections using passive air-jet vortex generators. AIAA J. 47(9), 2232–2242 (2009)CrossRefGoogle Scholar
  19. 19.
    Richter, K., Le Pape, A., Knopp, T., Costes, M., Gleize, V., Gardner, A.D.: Improved two-dimensional dynamic stall prediction with structured and hybrid numerical methods. In: 65th AHS Forum, Grapevine, Texas (2009)Google Scholar
  20. 20.
    Schwamborn, D., Gardner, A., von Geyr, H., Krumbein, A., Lüdeke, H., Stürmer, A.: Development of the TAU-Code for aerospace applications. In: 50th NAL ICAST, Bangalore, India (2008)Google Scholar
  21. 21.
    Spalart, P.R., Allmaras, S.R.: A one-equation turbulence model for aerodynamic flows. AIAA Paper 92-0439 (1992)Google Scholar

Copyright information

© Deutsches Zentrum für Luft- und Raumfahrt e.V. 2011

Authors and Affiliations

  1. 1.German Aerospace Center (DLR), Institute of Aerodynamics and Flow Technology (AS)GöttingenGermany

Personalised recommendations