Skip to main content
Log in

Whole transcriptome mapping reveals the lncRNA regulatory network of TFP5 treatment in diabetic nephropathy

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Background

TFP5 is a Cdk5 inhibitor peptide, which could restore insulin production. However, the role of TFP5 in diabetic nephropathy (DN) is still unclear.

Objective

This study aims to characterize the transcriptome profiles of mRNA and lncRNA in TFP5-treated DN mice to mine key lncRNAs associated with TFP5 efficacy.

Methods

We evaluated the role of TFP5 in DN pathology and performed RNA sequencing in C57BL/6J control mice, C57BL/6J db/db model mice, and TFP5 treatment C57BL/6J db/db model mice. The differentially expressed lncRNAs (DElncRNAs) and mRNAs (DEmRNAs) were analyzed. WGCNA was used to screen hub-gene of TFP5 in treatment of DN.

Results

Our results showed that TFP5 therapy ameliorated renal tubular injury in DN mice. In addition, compared with the control group, the expression profile of lncRNAs in the model group was significantly disordered, while TFP5 alleviated the abnormal expression of lncRNAs. A total of 67 DElncRNAs shared among the three groups, 39 DElncRNAs showed a trend of increasing in the DN group and decreasing after TFP treatment, while the remaining 28 showed the opposite trend. DElncRNAs were enriched in glycosphingolipid biosynthesis signaling pathways, NF-κB signaling pathways, and complement activation signaling pathways. There were 1028 up-regulated and 1117 down-regulated DEmRNAs in the model group compared to control group, and 123 up-regulated and 153 down-regulated DEmRNAs in the TFP5 group compared to the model group. The DEmRNAs were involved in PPAR and MAPK signaling pathway. We confirmed that MSTRG.28304.1 is a key DElncRNA for TFP5 treatment of DN. TFP5 ameliorated DN maybe by inhibiting MSTRG.28304.1 through regulating the insulin resistance and PPAR signaling pathway. The qRT-PCR results confirmed the reliability of the sequencing data through verifying the expression of ENSMUST00000211209, MSTRG.31814.5, MSTRG.28304.1, and MSTRG.45642.14.

Conclusion

Overall, the present study provides novel insights into molecular mechanisms of TFP5 treatment in DN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets described here are accessible via NCBI accession numbers PRJNA924084.

Referencesf

  • Aqdas M, Sung MH (2023) NF-kappaB dynamics in the language of immune cells. Trends Immunol 44:32–43

    Article  CAS  PubMed  Google Scholar 

  • Artunc F, Schleicher E, Weigert C, Fritsche A, Stefan N, Häring HU (2016) The impact of insulin resistance on the kidney and vasculature. Nat Rev Nephrol 12:721–737

    Article  CAS  PubMed  Google Scholar 

  • Atak BM, Duman TT, Aktas G, Kocak MZ, Savli H (2018) Platelet distribution width is associated with type 2 diabetes mellitus and diabetic nephropathy and neuropathy. Natl J Health Sci 3(3):95–98

    Article  Google Scholar 

  • Binukumar BK, Zheng YL, Shukla V, Amin ND, Grant P, Pant HC (2014) TFP5, a peptide derived from p35, a Cdk5 neuronal activator, rescues cortical neurons from glucose toxicity. J Alzheimers Dis 39:899–909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai D, Yuan M, Frantz DF, Melendez PA, Hansen L, Lee J, Shoelson SE (2005) Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med 11:183–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen K, Yu B, Liao JA-O (2021) LncRNA SOX2OT alleviates mesangial cell proliferation and fibrosis in diabetic nephropathy via Akt/mTOR-mediated autophagy. Mol Med 27:71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Liu Q, He J, Li Y (2022) Immune responses in diabetic nephropathy: pathogenic mechanisms and therapeutic target. Front Immunol 13:958790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi JH, Banks AS, Estall JL, Kajimura S, Bostrom P, Laznik D, Ruas JL, Chalmers MJ, Kamenecka TM, Bluher M et al (2010) Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARgamma by Cdk5. Nature 466:451–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cruz JC, Tsai LH (2004) A Jekyll and Hyde kinase: roles for Cdk5 in brain development and disease. Curr Opin Neurobiol 14:390–394

    Article  CAS  PubMed  Google Scholar 

  • Dai ZW, Cai KD, Xu LC, Wang LL (2020) Perilipin2 inhibits diabetic nephropathy-induced podocyte apoptosis by activating the PPARγ signaling pathway. Mol Cell Probes 53:101584

    Article  CAS  PubMed  Google Scholar 

  • Drapeau N, Lizotte F, Denhez B, Guay A, Kennedy CR, Geraldes P (2013) Expression of SHP-1 induced by hyperglycemia prevents insulin actions in podocytes. Am J Physiol-Endocrinol Metab 304(11):E1188–E1198

    Article  CAS  PubMed  Google Scholar 

  • Ensergueix G, Pallet N, Joly D, Levi C, Chauvet S, Trivin C, Augusto JF, Boudet R, Aboudagga H, Touchard G et al (2020) Ifosfamide nephrotoxicity in adult patients. Clin Kidney J 13:660–665

    Article  CAS  PubMed  Google Scholar 

  • Fox TE, Han X, Kelly S, Merrill AH 2nd, Martin RE, Anderson RE, Gardner TW, Kester M (2006) Diabetes alters sphingolipid metabolism in the retina: a potential mechanism of cell death in diabetic retinopathy. Diabetes 55:3573–3580

    Article  PubMed  Google Scholar 

  • García-Carro C, Draibe J, Soler MJ (2023) Onconephrology: update in anticancer drug-related nephrotoxicity. Nephron 147:65–77

    Article  PubMed  Google Scholar 

  • Guilliams M, Bruhns P, Saeys Y, Hammad H, Lambrecht BN (2014) The function of Fcγ receptors in dendritic cells and macrophages. Nat Rev Immunol 14(2):94–108

    Article  CAS  PubMed  Google Scholar 

  • Hayashi D, Shirai Y (2022) The role of diacylglycerol kinase in the amelioration of diabetic nephropathy. Molecules 27(20):6784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humbert S, Dhavan R, Tsai L (2000) p39 activates cdk5 in neurons, and is associated with the actin cytoskeleton. J Cell Sci 113(Pt 6):975–983

    Article  CAS  PubMed  Google Scholar 

  • Ji YB, Zhuang PP, Ji Z, Wu YM, Gu Y, Gao XY, Pan SY, Hu YF (2017) TFP5 peptide, derived from CDK5-activating cofactor p35, provides neuroprotection in early-stage of adult ischemic stroke. Sci Rep 7(1):40013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelley D, Rinn J (2012) Transposable elements reveal a stem cell-specific class of long noncoding RNAs. Genome Biol 13:R107

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kishi S, Abe H, Akiyama H, Tominaga T, Murakami T, Mima A, Nagai K, Kishi F, Matsuura M, Matsubara T et al (2011) SOX9 protein induces a chondrogenic phenotype of mesangial cells and contributes to advanced diabetic nephropathy. J Biol Chem 286:32162–32169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong L, Zhang Y, Ye ZQ, Liu XQ, Zhao SQ, Wei L, Gao G (2007) CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res 35:W345-349

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Sinha K, Sharma R, Purohit R, Padwad Y (2019) Phloretin and phloridzin improve insulin sensitivity and enhance glucose uptake by subverting PPARgamma/Cdk5 interaction in differentiated adipocytes. Exp Cell Res 383:111480

    Article  CAS  PubMed  Google Scholar 

  • Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee JY, Yang JW, Han BG, Choi SO, Kim JS (2019) Adiponectin for the treatment of diabetic nephropathy. Korean J Intern Med 34:480–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Ma W, Zeng P, Wang J, Geng B, Yang J, Cui Q (2015) LncTar: a tool for predicting the RNA targets of long noncoding RNAs. Brief Bioinform 16:806–812

    Article  CAS  PubMed  Google Scholar 

  • Li X, Bai C, Wang H, Wan T, Li Y (2022) LncRNA MEG3 regulates autophagy and pyroptosis via FOXO1 in pancreatic beta-cells. Cell Signal 92:110247

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Deng C, Tan PA-O (2022) Ombuin ameliorates diabetic nephropathy in rats by anti-inflammation and antifibrosis involving Notch 1 and PPAR γ signaling pathways. Drug Dev Res 83:1270–1280

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Chen PP, Zhang JX, Li XQ, Wang GH, Yuan BY, Huang SJ, Liu XQ, Jiang TT, Wang MY et al (2021) GPR43 deficiency protects against podocyte insulin resistance in diabetic nephropathy through the restoration of AMPKα activity. Theranostics 11:4728–4742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lv J, Cui W, Liu H, He H, Xiu Y, Guo J, Liu H, Liu Q, Zeng T, Chen Y et al (2013) Identification and characterization of long non-coding RNAs related to mouse embryonic brain development from available transcriptomic data. PLoS ONE 8:e71152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maric C, Sullivan S (2008) Estrogens and the diabetic kidney. Gend Med 5:S103–S113

    Article  PubMed  PubMed Central  Google Scholar 

  • Morgan DO (1997) Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu Rev Cell Dev Biol 13:261–291

    Article  CAS  PubMed  Google Scholar 

  • Nasri M, Adibhesami G, Mahdavifard S, Babaeenezhad E, Ahmadvand H (2023) Exogenous glutamine ameliorates diabetic nephropathy in a rat model of type 2 diabetes mellitus through its antioxidant and anti-inflammatory activities. Arch Physiol Biochem 129:363–372

    Article  CAS  PubMed  Google Scholar 

  • Niethammer M, Smith DS, Ayala R, Peng J, Ko J, Lee MS, Morabito M, Tsai LH (2000) NUDEL is a novel Cdk5 substrate that associates with LIS1 and cytoplasmic dynein. Neuron 28:697–711

    Article  CAS  PubMed  Google Scholar 

  • Park SY, Gautier JF, Chon S (2021) Assessment of insulin secretion and insulin resistance in human. Diabetes Metab J 45:641–654

    Article  PubMed  PubMed Central  Google Scholar 

  • Patel V, Carrion K, Hollands A, Hinton A, Gallegos T, Dyo J, Sasik R, Leire E, Hardiman G, Mohamed SA et al (2015) The stretch responsive microRNA miR-148a-3p is a novel repressor of IKBKB, NF-kappaB signaling, and inflammatory gene expression in human aortic valve cells. FASEB J 29:1859–1868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pichaiwong W, Hudkins KL, Wietecha T, Nguyen TQ, Tachaudomdach C, Li W, Askari B, Kobayashi T, O’Brien KD, Pippin JW, Shankland SJ (2013) Reversibility of structural and functional damage in a model of advanced diabetic nephropathy. J Am Soc Nephrol 24(7):1088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  CAS  PubMed  Google Scholar 

  • Rousseau M, Denhez B, Spino C, Lizotte F, Guay A, Côté A-M, Burger D, Geraldes PJB, Communications BR (2022a) Reduction of DUSP4 contributes to podocytes oxidative stress, insulin resistance and diabetic nephropathy. Biochem Biophys Res Commun 624:127–133

    Article  CAS  PubMed  Google Scholar 

  • Rousseau M, Denhez B, Spino C, Lizotte F, Guay A, Côté AM, Burger D, Geraldes P (2022b) Reduction of DUSP4 contributes to podocytes oxidative stress, insulin resistance and diabetic nephropathy. Biochem Biophys Res Commun 624:127–133

    Article  CAS  PubMed  Google Scholar 

  • Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, Colagiuri S, Guariguata L, Motala AA, Ogurtsova K et al (2019) Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res Clin Pract 157:107843

    Article  PubMed  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subathra M, Korrapati M, Howell LA, Arthur JM, Shayman JA, Schnellmann RG, Siskind LJ (2015) Kidney glycosphingolipids are elevated early in diabetic nephropathy and mediate hypertrophy of mesangial cells. Am J Physiol-Renal Physiol 309(3):F204–F215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun L, Luo H, Bu D, Zhao G, Yu K, Zhang C, Liu Y, Chen R, Zhao Y (2013) Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. Nucleic Acids Res 41:e166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun HJ, Xiong SP, Cao X, Cao L, Zhu MY, Wu ZY, Bian JS (2021) Polysulfide-mediated sulfhydration of SIRT1 prevents diabetic nephropathy by suppressing phosphorylation and acetylation of p65 NF-κB and STAT3. Redox Biol 38:101813

    Article  CAS  PubMed  Google Scholar 

  • Tang G, Du Y, Guan H, Jia J, Zhu N, Shi Y, Rong S, Yuan W (2022a) Butyrate ameliorates skeletal muscle atrophy in diabetic nephropathy by enhancing gut barrier function and FFA2-mediated PI3K/Akt/mTOR signals. Br J Pharmacol 179:159–178

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, Zhu Y, He H, Peng Y, Hu P, Wu J, Sun W, Liu P, Xiao Y, Xu XJ, Fi M (2022b) Gut dysbiosis and intestinal barrier dysfunction promotes IgA nephropathy by increasing the production of Gd-IgA1. Biomolecules 9:944027

    Google Scholar 

  • Tesch GH (2017) Diabetic nephropathy: Is this an immune disorder? Clin Sci 131:2183–2199

    Article  CAS  Google Scholar 

  • Thipsawat SA-O (2021) Early detection of diabetic nephropathy in patient with type 2 diabetes mellitus: a review of the literature. Diab Vasc Dis Res 18:14791641211058856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulitsky I, Bartel DP (2013) lincRNAs: genomics, evolution, and mechanisms. Cell 154:26–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S (2008) Functions of natural killer cells. Nat Immunol 9:503–510

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Park HJ, Dasari S, Wang S, Kocher JP, Li W (2013) CPAT: coding-potential assessment tool using an alignment-free logistic regression model. Nucleic Acids Res 41:e74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Dougherty EJ, Danner RL (2016) PPARγ signaling and emerging opportunities for improved therapeutics. Pharmacol Res 111:76–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y-h, Chang D-y, Zhao M-h, Chen M (2022) Glutathione peroxidase 4 is a predictor of diabetic kidney disease progression in type 2 diabetes mellitus. Oxid Med Cell Longev 2022:2948248

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, Kong L, Gao G, Li CY, Wei L (2011) KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res 39:W316-322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H, Xie T, Li D, Du X, Wang T, Li C, Song X, Xu L, Yi F, Liang X et al (2019) Tim-3 aggravates podocyte injury in diabetic nephropathy by promoting macrophage activation via the NF-κB/TNF-α pathway. Mol Metab 23:24–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yap KH, Yee GS (2020) Catalpol ameliorates insulin sensitivity and mitochondrial respiration in skeletal muscle of type-2 diabetic mice through insulin signaling pathway and AMPK/SIRT1/PGC-1α/PPAR-γ activation. Biomolecules 10:1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon Kim D, Kwon Lee J (2022) Type 1 and 2 diabetes are associated with reduced natural killer cell cytotoxicity. Cell Immunol 379:104578

    Article  CAS  PubMed  Google Scholar 

  • Zhai Y, Cao X, Liu S, Shen Y (2023) The diagnostic value of lipoprotein-associated phospholipase A2 in early diabetic nephropathy. Ann Med 55:2230446

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Yan Y, Hu Q, Zhang X (2023) LncRNA MALAT1/microRNA let-7f/KLF5 axis regulates podocyte injury in diabetic nephropathy. Life Sci 318:121420

    Article  CAS  PubMed  Google Scholar 

  • Zheng YL, Li BS, Amin ND, Albers W, Pant HC (2002) A peptide derived from cyclin-dependent kinase activator (p35) specifically inhibits Cdk5 activity and phosphorylation of tau protein in transfected cells. Eur J Biochem 269:4427–4434

    Article  CAS  PubMed  Google Scholar 

  • Zheng YL, Amin ND, Hu YF, Rudrabhatla P, Shukla V, Kanungo J, Kesavapany S, Grant P, Albers W, Pant HC (2010a) A 24-residue peptide (p5), derived from p35, the Cdk5 neuronal activator, specifically inhibits Cdk5-p25 hyperactivity and tau hyperphosphorylation. J Biol Chem 285:34202–34212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng YL, Hu YF, Zhang A, Wang W, Li B, Amin N, Grant P, Pant HC (2010b) Overexpression of p35 in Min6 pancreatic beta cells induces a stressed neuron-like apoptosis. J Neurol Sci 299:101–107

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This research was supported by National Natural Science Foundation of China (Nos. 81860136, 81460161), Natural Science Foundation of Ningxia Province (Nos. 2022AAC02059, NZ17186, 2021AAC03311), and The Key Research and Development Program of Ningxia Province Region projects (Nos. 2022BEG03121, 2018BFG0210).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by LY, GZ, XB, DM, BL, LC, SC, SL, LB, JE. The first draft of the manuscript was written by HL, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yali Zheng.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

The study was approved by the Ningxia Medical University Affiliated People’s Hospital of Autonomous Region of Yinchuan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

13258_2024_1504_MOESM1_ESM.tif

Supplementary file 1. GO analysis of the target genes of DElncRNAs. (A) GO analysis of target genes of up-regulated DElncRNAs in model group compared with ctrl group. (B) GO analysis of target genes of down-regulated DElncRNAs in model group compared with ctrl group. (C) GO analysis of target genes of up-regulated DElncRNAs in TFP5 group compared with model group. (D) GO analysis of target genes of down-regulated DElncRNAs in TFP5 group compared with model group (TIF 1315 kb)

13258_2024_1504_MOESM2_ESM.tif

Supplementary file 2. The overlap KEGG signaling pathway analysis. Pathway node overlap indicates shared pathway genes. (A) The overlap KEGG signal pathway in the target of down-regulated DElncRNAs in model group compared with ctrl group and the target genes of up-regulated DElncRNAs in TFP5 group compared with model group. (B) The overlap KEGG pathway in the target of up-regulated DElncRNAs in model group compared to ctrl group and the target genes of down-regulated DElncRNAs in TFP5 group compared with model group (TIF 238 kb)

13258_2024_1504_MOESM3_ESM.tif

Supplementary file 3. GO analysis of the target genes of DEmRNAs. (A) GO analysis of up-regulated DEmRNAs in model group compared to ctrl group. (B) GO analysis of down-regulated DEmRNAs in model group compared to ctrl group. (C) GO analysis of up-regulated DEmRNAs in TFP5 group compared to model group. (D) GO analysis of down-regulated DEmRNAs in TFP5 group compared to model group (TIF 1524 kb)

13258_2024_1504_MOESM4_ESM.tif

Supplementary file 4. KEGG analysis of the target genes of DEmRNAs. (A) KEGG analysis of up-regulated DEmRNAs in model group compared with ctrl group. (B) KEGG analysis of down-regulated DEmRNAs in model group compared with ctrl group. (C) KEGG analysis of up-regulated DEmRNAs in TFP5 group compared with model group. (D) KEGG analysis of down-regulated DEmRNAs in TFP5 group compared with model group (TIF 1301 kb)

13258_2024_1504_MOESM5_ESM.tiff

Supplementary file 5. GCNA of all samples. (A) Clustering dendrogram of the sequencing data from 15 samples. (B) Determination of the soft threshold. (C) Clustering dendrogram for genes. Each color indicates one co-expression gene module. (D) Heatmap depicting correlations between module and samples (TIFF 1304 kb)

Supplementary file 6. The primer’s sequences used in this study (DOCX 13 kb)

Supplementary file 7. The detail expression, fold change, and p-values of common 67 DElncRNAs (XLSX 33 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, H., Yang, L., Zhang, G. et al. Whole transcriptome mapping reveals the lncRNA regulatory network of TFP5 treatment in diabetic nephropathy. Genes Genom 46, 621–635 (2024). https://doi.org/10.1007/s13258-024-01504-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-024-01504-y

Keywords

Navigation