Skip to main content
Log in

In silico identification and expression analyses of peroxidases in Tenebrio molitor

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Human advancements in agriculture, urbanization, and industrialization have led to various forms of environmental pollution, including heavy metal pollution. Insects, as highly adaptable organisms, can survive under various environmental stresses, which induce oxidative damage and impair antioxidant systems. To investigate the peroxidase (POX) family in Tenebrio molitor, we characterized two POXs, namely TmPOX-iso1 and TmPOX-iso2. The full-length cDNA sequences of TmPox-iso1 and TmPox-iso2 respectively consisted of an open reading frame of 1815 bp encoding 605 amino acids and an open reading frame of 2229 bp encoding 743 amino acids. TmPOX-iso1 and TmPOX-iso2 homologs were found in five distinct insect orders. In the phylogenetic tree analysis, TmPOX-iso1 was clustered with the predicted POX protein of T. castaneum, and TmPOX-iso2 was clustered with the POX precursor protein of T. castaneum. During development, the highest expression level of TmPox-iso1 was observed in the pre-pupal stage, while that of TmPox-iso2 expression were observed in the pre-pupal and 4-day pupal stages. TmPox-iso1 was primarily expressed in the early and late larval gut, while TmPox-iso2 mRNA expression was higher in the fat bodies and Malpighian tubules. In response to cadmium chloride treatment, TmPox-iso1 expression increased at 3 hours and then declined until 24 hours, while in the zinc chloride-treated group, TmPox-iso1 expression peaked 24 hours after the treatment. Both treated groups showed increases in TmPox-iso2 expression 24 hours after the treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  • Alloway BJ (2009) Soil factors associated with zinc deficiency in crops and humans. Environ Geochem Health 31(5):537–548

    Article  CAS  PubMed  Google Scholar 

  • Bailey D, Basar MA, Nag S, Bondhu N, Teng S, Duttaroy A (2017) The essential requirement of an animal heme peroxidase protein during the wing maturation process in Drosophila. BMC Dev Biol 17(1):1–11

    Article  PubMed  PubMed Central  Google Scholar 

  • Bindoli A, Rigobello MP (2013) Peroxidase Biochemistry and Redox Signaling. In: Lennarz WJ, Lane MD (eds) Encyclopedia of Biological Chemistry, 2nd edn. Academic Press, Waltham, pp 407–412

    Chapter  Google Scholar 

  • Czeczot H, Majewska M (2010) Cadmium—Exposure and its effects on health. Farm. Pol 66:243–250

    Google Scholar 

  • Dietz K-J, Baier M, Krämer U (1999) Free Radicals and Reactive Oxygen Species as Mediators of Heavy Metal Toxicity. Plants, Heavy Metal Stress in Plants: From Molecules to Ecosystems. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 73–97

    Chapter  Google Scholar 

  • Dmochowska-Ślęzak K, Giejdasz K, Fliszkiewicz M, Żółtowska K (2015) Variations in antioxidant defense during the development of the solitary bee Osmia bicornis. Apidologie 46:432–444

    Article  Google Scholar 

  • Domingo-Relloso A, Riffo-Campos AL, Haack K, Rentero-Garrido P, Ladd-Acosta C, Fallin DM, Tang WY, Herreros-Martinez M, Gonzalez JR, Bozack AK, Cole SA, Navas-Acien A, Tellez-Plaza M (2020) Cadmium, Smoking, and Human Blood DNA Methylation Profiles in Adults from the Strong Heart Study. Environ Health Perspect 128(6):67005. https://doi.org/10.1289/ehp6345

    Article  CAS  PubMed  Google Scholar 

  • EPA U (2009). National recommended water quality criteria. United States Environmental Protection Agency. Office of Water, Office of Science and Technology.

  • Eraly D, Hendrickx F, Backeljau T, Bervoets L, Lens L (2011) Direct and indirect effects of metal stress on physiology and life history variation in field populations of a lycosid spider. Ecotoxicol Environ Saf 74(6):1489–1497

    Article  CAS  PubMed  Google Scholar 

  • Felton GW, Summers CB (1995) Antioxidant systems in insects. Arch Insect Biochem Physiol 29(2):187–197. https://doi.org/10.1002/arch.940290208

    Article  CAS  PubMed  Google Scholar 

  • Fujishiro H, Liu Y, Ahmadi B, Templeton DM (2018) Protective effect of cadmium-induced autophagy in rat renal mesangial cells. Arch Toxicol 92:619–631

    Article  CAS  PubMed  Google Scholar 

  • Giaginis C, Gatzidou E, Theocharis S (2006) DNA repair systems as targets of cadmium toxicity. Toxicol Appl Pharmacol 213(3):282–290. https://doi.org/10.1016/j.taap.2006.03.008

    Article  CAS  PubMed  Google Scholar 

  • Hamada T, Tanimoto A, Sasaguri Y (1997) Apoptosis induced by cadmium. Apoptosis 2(4):359–367. https://doi.org/10.1023/a:1026401506914

    Article  CAS  PubMed  Google Scholar 

  • Hurd TR, Liang F-X, Lehmann R (2015) Curly encodes dual oxidase, which acts with heme peroxidase Curly Su to shape the adult Drosophila wing. PLoS genetics 11(11):e1005625

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7(2):60–72. https://doi.org/10.2478/intox-2014-0009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jalil S, Nazir MM, Ali Q, Zulfiqar F, Moosa A, Altaf MA, Zaid A, Nafees M, Yong JWH, Jin X (2023) Zinc and nano zinc mediated alleviation of heavy metals and metalloids in plants an overview. Funct Plant Biol 50:870

    Article  CAS  PubMed  Google Scholar 

  • Jarup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182

    Article  PubMed  Google Scholar 

  • Kabata-Pendias A (2004) Soil–plant transfer of trace elements—an environmental issue. Geoderma 122(2):143–149. https://doi.org/10.1016/j.geoderma.2004.01.004

    Article  CAS  Google Scholar 

  • Kajla M, Gupta K, Kakani P, Dhawan R, Choudhury T, Gupta L, Gakhar S, Kumar S (2015) Identification of an Anopheles lineage-specific unique heme peroxidase HPX15: a plausible candidate for arresting malaria parasite development. J. Phylogenetics Evol. Biol 3:160

    Article  Google Scholar 

  • Kakani P, Gupta L, Kumar S (2020) Heme-Peroxidase 2, a Peroxinectin-Like Gene, Regulates Bacterial Homeostasis in Anopheles stephensi Midgut. Front Physiol 11:572340. https://doi.org/10.3389/fphys.2020.572340

    Article  PubMed  PubMed Central  Google Scholar 

  • Krsnik-Rasol M (2002) Peroxidase as a developmental marker in plant tissue culture. Int J Dev Biol 35(3):259–263

    Google Scholar 

  • Kumar S, Molina-Cruz A, Gupta L, Rodrigues J, Barillas-Mury C (2010) A peroxidase/dual oxidase system modulates midgut epithelial immunity in Anopheles gambiae. Science 327(5973):1644–1648. https://doi.org/10.1126/science.1184008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 70 for bigger datasets. Mol Biol Evol 33(7):1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurochkin IO, Etzkorn M, Buchwalter D, Leamy L, Sokolova IM (2011) Top-down control analysis of the cadmium effects on molluscan mitochondria and the mechanisms of cadmium-induced mitochondrial dysfunction. Am J Physiol-Regul, Integr Comparat Physiol 300(1):R21–R31

    Article  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948

    Article  CAS  PubMed  Google Scholar 

  • le Roes-Hill M, Khan N, Burton SG (2011) Actinobacterial peroxidases: an unexplored resource for biocatalysis. Appl Biochem Biotechnol 164(5):681–713. https://doi.org/10.1007/s12010-011-9167-5

    Article  CAS  PubMed  Google Scholar 

  • Martins D, Kathiresan M, English AM (2013) Cytochrome c peroxidase is a mitochondrial heme-based H2O2 sensor that modulates antioxidant defense. Free Radic Biol Med 65:541–551

    Article  CAS  PubMed  Google Scholar 

  • Masindi V, Muedi KL (2018) Environmental contamination by heavy metals. Heavy metals 10:115–132

    Google Scholar 

  • Mazzei V, Longo G, Brundo MV, Copat C, Oliveri Conti G, Ferrante M (2013) Effects of heavy metal accumulation on some reproductive characters in Armadillidium granulatum Brandt (Crustacea, Isopoda, Oniscidea). Ecotoxicol Environ Saf 98:66–73. https://doi.org/10.1016/j.ecoenv.2013.09.023

    Article  CAS  PubMed  Google Scholar 

  • Ortmayer M, Green AP (2020) Heme Peroxidases. In: Roberts G, Watts A (eds) Encyclopedia of Biophysics. Springer, Berlin, Heidelberg, pp 1–6

    Google Scholar 

  • Park HJ, Kim SU, Jung KY, Lee S, Choi YD, Owens VN, Kumar S, Yun SW, Hong CO (2021) Cadmium phytoavailability from 1976 through 2016: Changes in soil amended with phosphate fertilizer and compost. Sci Total Environ 762:143132

    Article  CAS  PubMed  Google Scholar 

  • Peralta-Videa JR, Lopez ML, Narayan M, Saupe G, Gardea-Torresdey J (2009) The biochemistry of environmental heavy metal uptake by plants: Implications for the food chain. Int J Biochem Cell Biol 41(8):1665–1677

    Article  CAS  PubMed  Google Scholar 

  • Pimentel D (1994) Insect population responses to environmental stress and pollutants. Environ Rev 2(1):1–15

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    CAS  PubMed  Google Scholar 

  • Sandbichler AM, Höckner M (2016) Cadmium protection strategies—a hidden trade-off? Int J Mol Sci 17(1):139

    Article  PubMed  PubMed Central  Google Scholar 

  • Shabannejad Mamaghani M, Asareh M, Omidi M, Matinizadeh M, Foruotan M, Ghamari-zare A, Shahrzad S, Jebelli M (2010) Identification of somaclonal variation using peroxidase and microsatellite markers in Eucalyptus microtheca F Muell. Iran J Rangelands For Plant Breed Genet Res 17(2):195–208

    Google Scholar 

  • Shahid M, Pourrut B, Dumat C, Nadeem M, Aslam M, Pinelli E (2014) Heavy-Metal-Induced Reactive Oxygen Species: Phytotoxicity and Physicochemical Changes in Plants. In: Whitacre DM (ed) Reviews of Environmental Contamination and Toxicology, vol 232. Springer International Publishing, Cham, pp 1–44

    Google Scholar 

  • Sharma A, Patni B, Shankhdhar D, Shankhdhar SC (2013) Zinc - an indispensable micronutrient. Physiol Mol Biol Plants 19(1):11–20. https://doi.org/10.1007/s12298-012-0139-1

    Article  CAS  PubMed  Google Scholar 

  • Shu Y, Gao Y, Sun H, Zou Z, Zhou Q, Zhang G (2009) Effects of zinc exposure on the reproduction of Spodoptera litura Fabricius (Lepidoptera: Noctuidae). Ecotoxicol Environ Saf 72(8):2130–2136. https://doi.org/10.1016/j.ecoenv.2009.06.004

    Article  CAS  PubMed  Google Scholar 

  • Singh KL, Chaudhuri A, Kar RK (2015) Role of peroxidase activity and Ca 2+ in axis growth during seed germination. Planta 242:997–1007

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Zhang SH, Wang PF, Hou J, Zhang WJ, Li W, Lin ZP (2009) The effect of excess Zn on mineral nutrition and antioxidative response in rapeseed seedlings. Chemosphere 75(11):1468–1476. https://doi.org/10.1016/j.chemosphere.2009.02.033

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Zhang H, Zhong H, Xue Z (2021) Protein domain identification methods and online resources. Comput Struct Biotechnol J 19:1145–1153

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Hu H, Chang Z, Zhang S, Lu Y (2023) Molecular mechanism of Enterococcus faecalis-induced phosphine sensitivity in Tribolium castaneum (Coleoptera: Tenebrionidae). J Econ Entomol. https://doi.org/10.1093/jee/toad171

    Article  PubMed  Google Scholar 

  • Zhao X, Smartt CT, Li J, Christensen BM (2001) Aedes aegypti peroxidase gene characterization and developmental expression. Insect Biochem Mol Biol 31(4):481–490. https://doi.org/10.1016/S0965-1748(00)00155-7

    Article  CAS  PubMed  Google Scholar 

  • Zhou C, Yang H, Wang Z, Long GY, Jin DC (2018) Protective and Detoxifying Enzyme Activity and ABCG Subfamily Gene Expression in Sogatella furcifera Under Insecticide Stress. Front Physiol 9:1890. https://doi.org/10.3389/fphys.2018.01890

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Soonchunhyang University Research Fund and by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (Grant No. 2022R1A2C1013108) and by the Ministry of Education (NRF-2021R1A6A1A03039503).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, YSH, and YHJ; methodology, HAJ, YSH, and YHJ; software, YHJ; validation, YSH; formal analysis, HAJ, SMK, JHK and YHJ; investigation, HAJ, SMK and JHK; resources, YHJ; data curation, HAJ, SMK, and YHJ; writing—original draft preparation, HAJ, and SMK; writing—review and editing, SMJ, JDL, and YSL; visualization, HAJ, SMK and YHJ; supervision, YHJ; project administration, YHJ; and funding acquisition, YHJ. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Yong Hun Jo.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Ethical approval

Not applicable

Informed consent

Not applicable

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17521 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, H.A., Ku, S.M., Kim, J.H. et al. In silico identification and expression analyses of peroxidases in Tenebrio molitor. Genes Genom 46, 601–611 (2024). https://doi.org/10.1007/s13258-024-01498-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-024-01498-7

Keywords

Navigation