Skip to main content
Log in

MicroRNA 452 regulates SHC1 expression in human colorectal cancer and colitis

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Background

Human microRNA 452 (MIR452) has been linked to both colorectal cancer (CRC) tissues and dextran sulfate sodium (DSS)-induced colitis.

Objective

We analyzed the correlation between MIR452 and its putative target gene in human CRC cells and in mouse colitis tissues.

Methods

Luciferase reporter assay confirmed that Src homologous and collagen adaptor protein 1 (SHC1) is a direct target of MIR452. Furthermore, the expression of proteins or mRNA was assessed by immunohistochemical analysis, Western blot, or quantitative RT-PCR (qRT-PCR).

Results

We found that MIR452 has a potential binding site at 3′-UTR of SHC1. Likewise, MIR452 or siSHC1 transfection dramatically reduced the level of cellular SHC1 in CRC cells. The expression of SHC1 was frequently downregulated in both human CRC tissues and mouse colitis tissues. In CRC cells, we demonstrated that MIR452 regulated the expression of genes involved in the SHC1-mediated KRAS-MAPK signal transduction pathways.

Conclusion

These findings suggest a potential defense mechanism in which MIR452 regulation of the adaptor protein SHC1 maintains cellular homeostasis during carcinogenesis or chronic inflammation. Therefore, MIR452 may have therapeutic value for human early-stage CRC and colitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study available from the corresponding author on reasonable request.

References

  • Alam SM, Rajendran M, Ouyang S, Veeramani S, Zhang L, Lin MF (2009) A novel role of Shc adaptor proteins in steroid hormone-regulated cancers. Endocr Relat Cancer 16:1–16

    Article  CAS  PubMed  Google Scholar 

  • Alam KJ, Mo JS, Han SH, Park WC, Kim HS, Yun KJ, Chae SC (2017) MicroRNA 375 regulates proliferation and migration of colon cancer cells by suppressing the CTGF-EGFR signaling pathway. Int J Cancer 141:1614–1629

    Article  CAS  PubMed  Google Scholar 

  • Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424

    Article  PubMed  Google Scholar 

  • Chen Z, Liu S, Tian L, Wu M, Ai F, Tang W, Zhao L, Ding J, Zhang L, Tang A (2015) miR-124 and miR-506 inhibit colorectal cancer progression by targeting DNMT3B and DNMT1. Oncotarget 6(35):38139–38150

    Article  PubMed  PubMed Central  Google Scholar 

  • Derfoul A, Juan AH, Difilippantonio MJ, Palanisamy N, Ried T, Sartorelli V (2011) Decreased microRNA-214 levels in breast cancer cells coincides with increased cell proliferation, invasion and accumulation of the Polycomb Ezh2 methyltransferase. Carcinogenesis 32:1607–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elson CO, Sartor RB, Tennyson GS, Riddell RH (1995) Experimental models of inflammatory bowel disease. Gastroenterol 109:1344–1367

    Article  CAS  Google Scholar 

  • Farraye FA, Odze RD, Eaden J, Itzkowitz SH (2010) AGA technical review on the diagnosis and management of colorectal neoplasia in inflammatory bowel disease. Gastroenterol 138:746–774

    Article  Google Scholar 

  • Fiocchi C (1998) Inflammatory bowel disease: etiology and pathogenesis. Gastroenterol 115:182–205

    Article  CAS  Google Scholar 

  • Flynn DC (2001) Adaptor proteins. Oncogene 20:6270–6272

    Article  CAS  PubMed  Google Scholar 

  • Garzon R, Fabbri M, Cimmino A, Calin GA, Croce CM (2006) MicroRNA expression and function in cancer. Trends Mol Med 12:580–587

    Article  CAS  PubMed  Google Scholar 

  • Gu H, Neel BG (2003) The “Gab” in signal transduction. Trends Cell Biol 13(3):122–130

    Article  CAS  PubMed  Google Scholar 

  • Gupta K, Jones JC, Farias VDA, Mackeyev Y, Singh PK, Quiñones-Hinojosa A, Krishnan S (2022) Identification of Synergistic drug combinations to target KRAS-driven chemoradioresistant cancers utilizing tumoroid models of colorectal adenocarcinoma and recurrent glioblastoma. Front Oncol 12:840241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han SH, Mo JS, Park WC, Chae SC (2019) Reduced microRNA 375 in colorectal cancer upregulates metadherin-mediated signaling. World J Gastroenterol 25(44):6495–6507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasinski AL, Slack FJ (2011) MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy. Nat Rev Cancer 11:849–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knauf JA, Kuroda H, Basu S, Fagin JA (2003) RET/PTC-induced dedifferentiation of thyroid cells is mediated through Y1062 signaling through SHC-RAS-MAP kinase. Oncogene 22(28):4406–4412

    Article  CAS  PubMed  Google Scholar 

  • Lemmon MA, Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell 141(7):1117–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li T, Jian X, He H, Lai Q, Li X, Deng D, Liu T, Zhu J, Jiao H, Ye Y (2018) MiR-452 promotes an aggressive colorectal cancer phenotype by regulating a Wnt/β-catenin positive feedback loop. J Exp Clin Cancer Re 37:238

    Article  Google Scholar 

  • Lin X, Han L, Gu C, Lai Y, Lai Q, Li Q, He C, Meng Y, Pan L, Liu S (2021) MiR-452-5p promotes colorectal cancer progression by regulating an ERK/MAPK positive feedback loop. Aging 13(5):7608–7626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luoa LY, Hahn WC (2015) Oncogenic signaling adaptor proteins. J Genet Genomics 42(10):521–529

    Article  Google Scholar 

  • Ma L, Ma S, Zhao G, Yang L, Zhang P, Yi Q, Cheng S (2016) miR-708/LSD1 axis regulates the proliferation and invasion of breast cancer cells. Cancer Med 5:684–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mantovani A (2010) Molecular pathways linking inflammation and cancer. Curr Mol Med Actions 10(4):369–373

    Article  CAS  Google Scholar 

  • Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454:436–444

    Article  CAS  PubMed  Google Scholar 

  • Migliaccio E, Mele S, Salcini AE, Pelicci G, Lai KM, Superti-Furga G, Pawson T, Di Fiore PP, Lanfrancone L, Pelicci PG (1997) Opposite effects of the p52shc/p46shc and p66shc splicing isoforms on the EGF receptor-MAP kinasefos signalling pathway. EMBO J 16:706–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Migliaccio E, Giorgio M, Mele S, Pelicci G, Reboldi P, Pandolfi PP, Lanfrancone L, Pelicci PG (1999) The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature 402(6759):309–313

    Article  CAS  PubMed  Google Scholar 

  • Mo JS, Chae SC (2021) MicroRNA 452 regulates ASB8, NOL8, and CDR2 expression in colorectal cancer cells. Genes Genomics 43:33–41

    Article  CAS  PubMed  Google Scholar 

  • Mo JS, Alam KJ, Kang IH, Park WC, Seo GS, Choi SC, Kim HS, Moon H, Yun KJ, Chae SC (2015) MicroRNA 196B regulates FAS-mediated apoptosis in colorectal cancer cells. Oncotarget 6:2843–2855

    Article  PubMed  Google Scholar 

  • Mo JS, Alam KJ, Kim HS, Lee YM, Yun KJ, Chae SC (2016) MicroRNA 429 regulates mucin gene expression and secretion in murine model of colitis. J Crohns Colitis 10:837–849

    Article  PubMed  Google Scholar 

  • Mo JS, Han SH, Yun KJ, Chae SC (2018) MicroRNA 429 regulates the expression of CHMP5 in the inflammatory colitis and colorectal cancer cells. Inflamm Res 67(11–12):985–996

    Article  CAS  PubMed  Google Scholar 

  • Mo JS, Park WC, Choi SC, Yun KJ, Chae SC (2019) MicroRNA 452 regulates cell proliferation, cell migration, and angiogenesis in colorectal cancer by suppressing VEGFA expression. Cancers 11:1613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Keefe SJ (2016) Diet, microorganisms and their metabolites, and colon cancer. Nat Rev Gastroenterol Hepatol 13:12

    Google Scholar 

  • Pawson T, Scott JD (1997) Signaling through scaffold, anchoring, and adaptor proteins. Science 278:2075–2080

    Article  CAS  PubMed  Google Scholar 

  • Pelicci G, Lanfrancone L, Grignani F, McGlade J, Cavallo F, Forni G, Nicoletti I, Grignani F, Pawson T, Pelicci PG (1992) A novel transforming protein (SHC) with an SH2 domain is implicated in mitogenic signal transduction. Cell 70:93–104

    Article  CAS  PubMed  Google Scholar 

  • Pomerleau V, Landry M, Bernier J, Vachon PH, Saucier C (2014) Met receptor-induced Grb2 or Shc signals both promote transformation of intestinal epithelial cells, albeit they are required for distinct oncogenic functions. BMC Cancer 14:240

    Article  PubMed  PubMed Central  Google Scholar 

  • Salcini AE, McGlade J, Pelicci G, Nicoletti I, Pawson T, Pelicci PG (1994) Formation of Shc-Grb2 complexes is necessary to induce neoplastic transformation by overexpression of Shc proteins. Oncogene 9(10):2827–2836

    CAS  PubMed  Google Scholar 

  • Shi W, Zhang G, Ma Z, Li L, Liu M, Qin L, Yu Z, Zhao L, Liu Y, Zhang X et al (2021) Hyperactivation of HER2-SHCBP1-PLK1 axis promotes tumor cell mitosis and impairs trastuzumab sensitivity to gastric cancer. Nat Commun 12:2812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevenson LE, Ravichandran KS, Frackelton AR Jr (1999) Shc dominant negative disrupts cell cycle progression in both G0–G1 and G2-M of ErbB2-positive breast cancer cells. Cell Growth Differ 10(1):61–71

    CAS  PubMed  Google Scholar 

  • Tulpule A, Guan J, Neel DS, Allegakoen HR, Lin YP, Brown D, Chou YT, Heslin A, Chatterjee N, Perati S (2021) Kinase-mediated RAS signaling via membraneless cytoplasmic protein granules. Cell 184(10):2649–2664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ungaro R, Mehandru S, Allen PB, Peyrin-Biroulet L, Colombel JF (2017) Ulcerative colitis. Lancet 389:1756–1770

    Article  PubMed  Google Scholar 

  • Ullman TA, Itzkowitz SH (2011) Intestinal inflammation and cancer. Gastroenterol 140:1807–1816

    Article  CAS  Google Scholar 

  • Wary KK, Mainiero F, Isakoff SJ, Marcantonio EE, Giancotti FG (1996) The adaptor protein Shc couples a class of integrins to the control of cell cycle progression. Cell 87(4):733–743

    Article  CAS  PubMed  Google Scholar 

  • Xavier RJ, Podolsk DK (2007) Unraveling the pathogenesis of inflammatory bowel disease. Nature 448(7152):427–434

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Zhang C, Croucher DR, Soliman MA, St-Denis N, Pasculescu A, Taylor L, Tate SA, Hardy WR, Colwill K et al (2013) Temporal regulation of EGF signalling networks by the scaffold protein Shc1. Nature 499:166–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The biospecimens for this study were provided by the Biobank of Wonkwang University Hospital, a member of the National Biobank of Korea, which is supported by the Ministry of Health and Welfare. This research was supported by Wonkwang University in 2021.

Funding

This research was supported by Wonkwang University in 2021.

Author information

Authors and Affiliations

Authors

Contributions

The authors confirm contribution and declaration to the paper are as follows: Study concepts, design, draft the manuscript, and revised it critically: S-CC. Performed the experiments, data collection, interpretation and analysis of results: J-SM and S-CC. Contributed reagents/materials and discussion: SL and K-JY.

Corresponding author

Correspondence to Soo-Cheon Chae.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to disclose.

Ethical approval

All procedures involving human subjects were examined and endorsed in accordance with the Ethical Standards set by the Committee of Ethical Standards of Wonkwang University, Republic of Korea (WKIRB-201703-BR-010). The consent for the animal experiments was approved by the Institutional Animal Care and Use Committee (WKU17-53).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mo, Js., Lamichhane, S., Yun, Kj. et al. MicroRNA 452 regulates SHC1 expression in human colorectal cancer and colitis. Genes Genom 45, 1295–1304 (2023). https://doi.org/10.1007/s13258-023-01432-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-023-01432-3

Keywords

Navigation