Skip to main content

Advertisement

Log in

Iron metabolism protein transferrin receptor 1 involves in cervical cancer progression by affecting gene expression and alternative splicing in HeLa cells

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Background

Transferrin receptor 1 (TfR1), encoded by TFRC, is a key regulator of iron homeostasis and plays important roles in many diseases, including cancers.

Objective

To decipher the underlying molecular functions of TfR1 based on its influence on transcriptome profile in cancer cells.

Methods

In this study, we first identified the expression pattern and prognostic influence of TFRC in cervical cancer patients from TCGA database. To explore the regulatory outcomes of TfR1 from the view of whole transcriptome profile, we generated TFRC knockdown (TFRC-KD) HeLa cells and negative control (NC) cells using short hairpin RNA (shRNA) method. Unbiased transcriptome sequencing (RNA-seq) experiment was used to analyze the global expression level and alternative splicing (AS) changes between TFRC-KD and NC cells.

Results

We found TFRC was consistently elevated in cervical cancer samples and tightly associated with prognosis of patients. Differential expression analysis revealed that 629 differentially expressed genes (DEGs) were identified between TFRC-KD and NC. Functional enrichment analysis of these DEGs revealed that TFRC-KD extensively disturbed cell physiology related pathways, including immunity, cell metabolism and gene expression. Moreover, dysregulated AS profile also indicated that TfR1 has important roles in the AS regulation. Hundreds of TfR1-regulated AS genes were involved in DNA repair, cell death, transcription and viral reproduction pathways, which were tightly associated with cancer cell progression.

Conclusions

In summary, we for the first time explored the molecular functions of TfR1 at transcriptional and post-transcriptional levels. These results demonstrate TfR1 participates in the progression of cervical cancer by affecting the expression and AS levels of genes in cancer associated pathways, which greatly extends our understanding of TfR1 functions besides iron homeostasis and provide novel options in cancer treatment by targeting TfR1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barman-Aksozen J, Beguin C, Dogar AM, Schneider-Yin X, Minder EI (2013) Iron availability modulates aberrant splicing of ferrochelatase through the iron- and 2-oxoglutarate dependent dioxygenase Jmjd6 and U2AF(65.). Blood Cells Mol Dis 51:151–161

    Article  CAS  PubMed  Google Scholar 

  • Breloy I, Hanisch FG (2018) Functional roles of O-glycosylation. Molecules 23:3063

    Article  PubMed Central  CAS  Google Scholar 

  • Brown RAM, Richardson KL, Kabir TD, Trinder D, Ganss R, Leedman PJ (2020) Altered iron metabolism and impact in cancer biology, metastasis, and immunology. Front Oncol 10:476

    Article  PubMed  PubMed Central  Google Scholar 

  • Buratti E, Peruzzo P, Braga L, Zanin I, Stuani C, Goina E, Romano M, Giacca M, Dardis A (2021) Deferoxamine mesylate improves splicing and GAA activity of the common c.-32-13T>G allele in late-onset PD patient fibroblasts. Mol Ther Methods Clin Dev 20:227–236

    Article  CAS  PubMed  Google Scholar 

  • Camaschella C, Strati P (2010) Recent advances in iron metabolism and related disorders. Intern Emerg Med 5:393–400

    Article  PubMed  Google Scholar 

  • Castello A, Fischer B, Eichelbaum K, Horos R, Beckmann BM, Strein C, Davey NE, Humphreys DT, Preiss T, Steinmetz LM (2012) Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 149:1393–1406

    Article  CAS  PubMed  Google Scholar 

  • Castello A, Fischer B, Hentze MW, Preiss T (2013) RNA-binding proteins in Mendelian disease. Trends Genet 29:318–327

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Manley JL (2009) Mechanisms of alternative splicing regulation: insights from molecular and genomics approaches. Nat Rev Mol Cell Biol 10:741–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • da Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    Article  CAS  Google Scholar 

  • Dev S, Babitt JL (2017) Overview of iron metabolism in health and disease. Hemodial Int 21(Suppl 1):S6–S20

    Article  PubMed  PubMed Central  Google Scholar 

  • Fillebeen C, Charlebois E, Wagner J, Katsarou A, Mui J, Vali H, Garcia-Santos D, Ponka P, Presley J, Pantopoulos K (2019) Transferrin receptor 1 controls systemic iron homeostasis by fine-tuning hepcidin expression to hepatocellular iron load. Blood 133:344–355

    Article  CAS  PubMed  Google Scholar 

  • Forciniti S, Greco L, Grizzi F, Malesci A, Laghi L (2020) Iron metabolism in cancer progression. Int J Mol Sci 21:2257

    Article  CAS  PubMed Central  Google Scholar 

  • Fu XD, Ares M Jr (2014) Context-dependent control of alternative splicing by RNA-binding proteins. Nat Rev Genet 15:689–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gammella E, Buratti P, Cairo G, Recalcati S (2017) The transferrin receptor: the cellular iron gate. Metallomics 9:1367–1375

    Article  CAS  PubMed  Google Scholar 

  • Ganz T (2009) Iron in innate immunity: starve the invaders. Curr Opin Immunol 21:63–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganz T, Nemeth E (2016) Iron balance and the role of hepcidin in chronic kidney disease. Semin Nephrol 36:87–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garrick MD (2011) Human iron transporters. Genes Nutr 6:45–54

    Article  CAS  PubMed  Google Scholar 

  • Ge Y, Porse BT (2014) The functional consequences of intron retention: alternative splicing coupled to NMD as a regulator of gene expression. BioEssays 36:236–243

    Article  CAS  PubMed  Google Scholar 

  • Gerstberger S, Hafner M, Tuschl T (2014) A census of human RNA-binding proteins. Nat Rev Genet 15:829–845

    Article  CAS  PubMed  Google Scholar 

  • Gozzelino R, Arosio P (2016) Iron homeostasis in health and disease. Int J Mol Sci 17:130

    Article  PubMed Central  CAS  Google Scholar 

  • Huang N, Zhan L-l, Cheng Y, Wang X-l, Wei Y-x, Wang Q, Li W-j (2020a) TfR1 extensively regulates the expression of genes associated with ion transport and immunity. Curr Med Sci 40:493–501

    Article  CAS  PubMed  Google Scholar 

  • Huang N, Zhan LL, Cheng Y, Wang XL, Wei YX, Wang Q, Li WJ (2020b) TfR1 extensively regulates the expression of genes associated with ion transport and immunity. Curr Med Sci 40:493–501

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Huang J, Huang Y, Gan L, Long L, Pu A, Xie R (2020c) TFRC promotes epithelial ovarian cancer cell proliferation and metastasis via up-regulation of AXIN2 expression. Am J Cancer Res 10:131–147

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jabara HH, Boyden SE, Chou J, Ramesh N, Massaad MJ, Benson H, Bainter W, Fraulino D, Rahimov F, Sieff C et al (2016) A missense mutation in TFRC, encoding transferrin receptor 1, causes combined immunodeficiency. Nat Genet 48:74–78

    Article  CAS  PubMed  Google Scholar 

  • Jacob AG, Smith CWJ (2017) Intron retention as a component of regulated gene expression programs. Hum Genet 136:1043–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kautz L, Meynard D, Monnier A, Darnaud V, Bouvet R, Wang RH, Deng C, Vaulont S, Mosser J, Coppin H et al (2008) Iron regulates phosphorylation of Smad1/5/8 and gene expression of Bmp6, Smad 7, Id1, and Atoh8 in the mouse liver. Blood 112:1503–1509

    Article  CAS  PubMed  Google Scholar 

  • Kenneth NS, Mudie S, Naron S, Rocha S (2013) TfR1 interacts with the IKK complex and is involved in IKK-NF-kappaB signalling. Biochem J 449:275–284

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14:R36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kobayashi M, Suhara T, Baba Y, Kawasaki NK, Higa JK, Matsui T (2018) Pathological roles of iron in cardiovascular disease. Curr Drug Targets 19:1068–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levy JE, Jin O, Fujiwara Y, Kuo F, Andrews NC (1999) Transferrin receptor is necessary for development of erythrocytes and the nervous system. Nat Genet 21:396–399

    Article  CAS  PubMed  Google Scholar 

  • Li H, Choesang T, Bao W, Chen H, Feola M, Garcia-Santos D, Li J, Sun S, Follenzi A, Pham P et al (2017) Decreasing TfR1 expression reverses anemia and hepcidin suppression in beta-thalassemic mice. Blood 129:1514–1526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu T, Zhang L, Joo D, Sun SC (2017) NF-kappaB signaling in inflammation. Signal Transduct Target Ther 2:1

    CAS  Google Scholar 

  • Liu J, Li C, Wang J, Xu D, Wang H, Wang T, Li L, Li H, Nan P, Zhang J et al (2020) Chromatin modifier MTA1 regulates mitotic transition and tumorigenesis by orchestrating mitotic mRNA processing. Nat Commun 11:4455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Magro G, Cataldo I, Amico P, Torrisi A, Vecchio GM, Parenti R, Asioli S, Recupero D, D’Agata V, Mucignat MT et al (2011) Aberrant expression of TfR1/CD71 in thyroid carcinomas identifies a novel potential diagnostic marker and therapeutic target. Thyroid 21:267–277

    Article  CAS  PubMed  Google Scholar 

  • Manz DH, Blanchette NL, Paul BT, Torti FM, Torti SV (2016) Iron and cancer: recent insights. Ann N Y Acad Sci 1368:149–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mu Q, Chen L, Gao X, Shen S, Sheng W, Min J, Wang F (2021) The role of iron homeostasis in remodeling immune function and regulating inflammatory disease. Sci Bull 66:1806

    Article  CAS  Google Scholar 

  • Mulero MC, Wang VY, Huxford T, Ghosh G (2019) Genome reading by the NF-kappaB transcription factors. Nucleic Acids Res 47:9967–9989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nilsen TW, Graveley BR (2010) Expansion of the eukaryotic proteome by alternative splicing. Nature 463:457–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noman MZ, Hasmim M, Messai Y, Terry S, Kieda C, Janji B, Chouaib S (2015) Hypoxia: a key player in antitumor immune response. A review in the theme: cellular responses to hypoxia. Am J Physiol Cell Physiol 309:C569-579

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  CAS  PubMed  Google Scholar 

  • Saito H, Fujimoto Y, Ohtake T, Suzuki Y, Sakurai S, Hosoki Y, Ikuta K, Torimoto Y, Kohgo Y (2005) Up-regulation of transferrin receptor 1 in chronic hepatitis C: Implication in excess hepatic iron accumulation. Hepatol Res 31:203–210

    Article  CAS  PubMed  Google Scholar 

  • Shen Y, Li X, Dong D, Zhang B, Xue Y, Shang P (2018) Transferrin receptor 1 in cancer: a new sight for cancer therapy. Am J Cancer Res 8:916–931

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sugimoto Y, Vigilante A, Darbo E, Zirra A, Militti C, D’Ambrogio A, Luscombe NM, Ule J (2015) hiCLIP reveals the in vivo atlas of mRNA secondary structures recognized by Staufen 1. Nature 519:491–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang Z, Kang B, Li C, Chen T, Zhang Z (2019) GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res 47:W556–W560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tejedor JR, Papasaikas P, Valcarcel J (2015) Genome-wide identification of Fas/CD95 alternative splicing regulators reveals links with iron homeostasis. Mol Cell 57:23–38

    Article  CAS  PubMed  Google Scholar 

  • Torti SV, Torti FM (2013) Iron and cancer: more ore to be mined. Nat Rev Cancer 13:342–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang SJ, Gao C, Chen BA (2010) Advancement of the study on iron metabolism and regulation in tumor cells. Chin J Cancer 29:451–455

    Article  PubMed  Google Scholar 

  • Wang Y, Yu L, Ding J, Chen Y (2018a) Iron Metabolism in cancer. Int J Mol Sci 20:95

    Article  PubMed Central  CAS  Google Scholar 

  • Wang Z, Yin W, Zhu L, Li J, Yao Y, Chen F, Sun M, Zhang J, Shen N, Song Y et al (2018b) Iron drives T helper cell pathogenicity by promoting RNA-binding protein PCBP1-mediated proinflammatory cytokine production. Immunity 49:80–92

    Article  CAS  PubMed  Google Scholar 

  • Ward RJ, Crichton RR, Taylor DL, Della Corte L, Srai SK, Dexter DT (2011) Iron and the immune system. J Neural Transm (Vienna) 118:315–328

    Article  CAS  Google Scholar 

  • Wu G, Yan Q, Jones JA, Tang YJ, Fong SS, Koffas MAG (2016) Metabolic burden: cornerstones in synthetic biology and metabolic engineering applications. Trends Biotechnol 34:652–664

    Article  CAS  PubMed  Google Scholar 

  • Xia H, Chen D, Wu Q, Wu G, Zhou Y, Zhang Y, Zhang L (2017) CELF1 preferentially binds to exon-intron boundary and regulates alternative splicing in HeLa cells. Biochim Biophys Acta Gene Regul Mech 1860:911–921

    Article  CAS  PubMed  Google Scholar 

  • Xiao R, Chen JY, Liang Z, Luo D, Chen G, Lu ZJ, Chen Y, Zhou B, Li H, Du X et al (2019) Pervasive chromatin-RNA binding protein interactions enable RNA-based regulation of transcription. Cell 178:107–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X, Liu T, Wu J, Wang Y, Hong Y, Zhou H (2019) Transferrin receptor-involved HIF-1 signaling pathway in cervical cancer. Cancer Gene Ther 26:356–365

    Article  CAS  PubMed  Google Scholar 

  • Zarnegar BJ, Flynn RA, Shen Y, Do BT, Chang HY, Khavari PA (2016) irCLIP platform for efficient characterization of protein-RNA interactions. Nat Methods 13:489–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang DL, Ghosh MC, Rouault TA (2014) The physiological functions of iron regulatory proteins in iron homeostasis: an update. Front Pharmacol 5:124

    PubMed  PubMed Central  Google Scholar 

  • Zhu BM, McLaughlin SK, Na R, Liu J, Cui Y, Martin C, Kimura A, Robinson GW, Andrews NC, Hennighausen L (2008) Hematopoietic-specific Stat5-null mice display microcytic hypochromic anemia associated with reduced transferrin receptor gene expression. Blood 112:2071–2080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members from ABLife Inc., Wuhan for their valuable assistance in data processing and analysis.

Funding

This study was supported by Natural Science Foundation of Hubei Province (2020CFB592).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjing Li.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest in this study.

Ethical approval

This article does not contain any research involving humans or animals as subjects of research.

Online data deposition

The datasets obtained in the present study are available from the National Center for Biotechnology Information Gene Expression Omnibus database (https://www.ncbi.nlm.nih.gov/geo/) under the accession number GSE131598.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, N., Wei, Y., Cheng, Y. et al. Iron metabolism protein transferrin receptor 1 involves in cervical cancer progression by affecting gene expression and alternative splicing in HeLa cells. Genes Genom 44, 637–650 (2022). https://doi.org/10.1007/s13258-021-01205-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-021-01205-w

Keywords

Navigation