Skip to main content
Log in

Novel blood-based hypomethylation of SH3BP5 is associated with very early-stage lung adenocarcinoma

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Background

Early detection is essential to improve the survival of lung cancer (LC). The quantitative measurement of specific DNA methylation changes in the peripheral blood could provide an efficient strategy for the detection of early cancer.

Objective

We applied a candidate approach and assess the association between blood-based SH3BP5 methylation and the risk of lung adenocarcinoma (LUAD) in a case–control cohort.

Methods

The methylation level of four CpG sites in the promoter of SH3BP5 gene was quantitatively determined by mass spectrometry in 171 very early-stage LUAD patients (93.6% LUAD at stage I) and 190 age and gender-matched controls. The logistic regression and non-parametric tests were used for the statistical analyses.

Results

We observed a significant association between decreased methylation of SH3BP5_CpG_4 in the peripheral blood and increased risk of LUAD (odds ratio (OR) per-10% methylation = 1.51, P = 0.006, FDR = 0.024), and even for the LUAD at stage I (OR per-10% methylation = 1.53, P = 0.006, FDR = 0.024). Moreover, the lower quartile of SH3BP5_CpG_4 methylation was correlated with increased risk for LUAD with a P trend of 0.011. Further investigation disclosed that the hypomethylation of SH3BP5_CpG_4 was mostly associated with LUAD in younger subjects (OR per-10% methylation = 2.02, P = 0.010, age < 55 years old) and probably could be enhanced by advance stage.

Conclusion

Our study revealed an association between blood-based SH3BP5 hypomethylation and very early-stage LUAD, which provides a novel support for the blood-based methylation signatures as a potential marker for the evaluation of cancer risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, Boldrick JC, Sabet H, Tran T, Yu X et al (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403:503–511

    CAS  PubMed  Google Scholar 

  • Baglietto L, Ponzi E, Haycock P, Hodge A, Bianca Assumma M, Jung CH, Chung J, Fasanelli F, Guida F, Campanella G et al (2017) DNA methylation changes measured in pre-diagnostic peripheral blood samples are associated with smoking and lung cancer risk. Int J Cancer 140:50–61

    Article  CAS  PubMed  Google Scholar 

  • Balgkouranidou I, Chimonidou M, Milaki G, Tsaroucha E, Kakolyris S, Georgoulias V, Lianidou E (2016) SOX17 promoter methylation in plasma circulating tumor DNA of patients with non-small cell lung cancer. Clin Chem Lab Med 54:1385–1393

    Article  CAS  PubMed  Google Scholar 

  • Belinsky SA, Nikula KJ, Palmisano WA, Michels R, Saccomanno G, Gabrielson E, Baylin SB, Herman JG (1998) Aberrant methylation of p16(INK4a) is an early event in lung cancer and a potential biomarker for early diagnosis. Proc Natl Acad Sci USA 95:11891–11896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blandin Knight S, Crosbie PA, Balata H, Chudziak J, Hussell T, Dive C (2017) Progress and prospects of early detection in lung cancer. Open Biol 7:170070

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brody H (2014) Lung cancer. Nature 513:S1

    Article  CAS  PubMed  Google Scholar 

  • Chansky K, Detterbeck FC, Nicholson AG, Rusch VW, Vallieres E, Groome P, Kennedy C, Krasnik M, Peake M, Shemanski L et al (2017) The IASLC Lung Cancer Staging Project: external validation of the revision of the TNM stage groupings in the eighth edition of the TNM Classification of Lung Cancer. J Thorac Oncol 12:1109–1121

    Article  PubMed  Google Scholar 

  • Chen ZM, Peto R, Iona A, Guo Y, Chen YP, Bian Z, Yang L, Zhang WY, Lu F, Chen JS et al (2015) Emerging tobacco-related cancer risks in China: A nationwide, prospective study of 0.5 million adults. Cancer 121(Suppl 17):3097–3106

    Article  PubMed  Google Scholar 

  • Davegardh C, Hall Wedin E, Broholm C, Henriksen TI, Pedersen M, Pedersen BK, Scheele C, Ling C (2019) Sex influences DNA methylation and gene expression in human skeletal muscle myoblasts and myotubes. Stem Cell Res Ther 10:26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duma N, Santana-Davila R, Molina JR (2019) Non-small cell lung cancer: epidemiology, screening, diagnosis, and treatment. Mayo Clin Proc 94:1623–1640

    CAS  PubMed  Google Scholar 

  • Esteller M (2008) Epigenetics in cancer. N Engl J Med 358:1148–1159

    Article  CAS  PubMed  Google Scholar 

  • Esteller M, Sparks A, Toyota M, Sanchez-Cespedes M, Capella G, Peinado MA, Gonzalez S, Tarafa G, Sidransky D, Meltzer SJ et al (2000) Analysis of adenomatous polyposis coli promoter hypermethylation in human cancer. Cancer Res 60:4366–4371

    CAS  PubMed  Google Scholar 

  • Field JK, Hansell DM, Duffy SW, Baldwin DR (2013) CT screening for lung cancer: countdown to implementation. Lancet Oncol 14:e591-600

    Article  PubMed  Google Scholar 

  • Fuke C, Shimabukuro M, Petronis A, Sugimoto J, Oda T, Miura K, Miyazaki T, Ogura C, Okazaki Y, Jinno Y (2004) Age related changes in 5-methylcytosine content in human peripheral leukocytes and placentas: an HPLC-based study. Ann Hum Genet 68:196–204

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Jia M, Zhang Y, Breitling LP, Brenner H (2015) DNA methylation changes of whole blood cells in response to active smoking exposure in adults: a systematic review of DNA methylation studies. Clin Epigenet 7:113

    Article  CAS  Google Scholar 

  • Hirsch FR, Scagliotti GV, Mulshine JL, Kwon R, Curran WJ Jr, Wu YL, Paz-Ares L (2017) Lung cancer: current therapies and new targeted treatments. Lancet 389:299–311

    Article  CAS  PubMed  Google Scholar 

  • Horvath S, Zhang Y, Langfelder P, Kahn RS, Boks MP, van Eijk K, van den Berg LH, Ophoff RA (2012) Aging effects on DNA methylation modules in human brain and blood tissue. Genome Biol 13:R97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hulbert A, Jusue-Torres I, Stark A, Chen C, Rodgers K, Lee B, Griffin C, Yang A, Huang P, Wrangle J et al (2017) Early detection of lung cancer using DNA promoter hypermethylation in plasma and sputum. Clin Cancer Res 23:1998–2005

    Article  CAS  PubMed  Google Scholar 

  • Ilse P, Biesterfeld S, Pomjanski N, Fink C, Schramm M (2013) SHOX2 DNA methylation is a tumour marker in pleural effusions. Cancer Genom Proteom 10:217–223

    CAS  Google Scholar 

  • Jacobson FL, Austin JH, Field JK, Jett JR, Keshavjee S, MacMahon H, Mulshine JL, Munden RF, Salgia R, Strauss GM et al (2012) Development of The American Association for Thoracic Surgery guidelines for low-dose computed tomography scans to screen for lung cancer in North America: recommendations of The American Association for Thoracic Surgery Task Force for Lung Cancer Screening and Surveillance. J Thorac Cardiovasc Surg 144:25–32

    Article  PubMed  Google Scholar 

  • Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13:484–492

    Article  CAS  PubMed  Google Scholar 

  • Jung SE, Shin KJ, Lee HY (2017) DNA methylation-based age prediction from various tissues and body fluids. BMB Rep 50:546–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerr KM, Galler JS, Hagen JA, Laird PW, Laird-Offringa IA (2007) The role of DNA methylation in the development and progression of lung adenocarcinoma. Dis Mark 23:5–30

    Article  CAS  Google Scholar 

  • Kneip C, Schmidt B, Seegebarth A, Weickmann S, Fleischhacker M, Liebenberg V, Field JK, Dietrich D (2011) SHOX2 DNA methylation is a biomarker for the diagnosis of lung cancer in plasma. J Thorac Oncol 6:1632–1638

    Article  PubMed  Google Scholar 

  • Kobayashi K, Yamaguchi M, Miyazaki K, Imai H, Yokoe K, Ono R, Nosaka T, Katayama N (2016) Expressions of SH3BP5, LMO3, and SNAP25 in diffuse large B-cell lymphoma cells and their association with clinical features. Cancer Med 5:1802–1809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Hao S, Li C, Xiao H, Sun L, Yu Z, Zhang N, Xiong Y, Zhao D, Yin Y (2019) Elevated SH3BP5 correlates with poor outcome and contributes to the growth of acute myeloid leukemia cells. Biomolecules 9:505

    Article  PubMed Central  CAS  Google Scholar 

  • Lin SC, Lin CH, Shih NC, Liu HL, Wang WC, Lin KY, Liu ZY, Tseng YJ, Chang HK, Lin YC et al (2020) Cellular prion protein transcriptionally regulated by NFIL3 enhances lung cancer cell lamellipodium formation and migration through JNK signaling. Oncogene 39:385–398

    Article  CAS  PubMed  Google Scholar 

  • McWilliams A, Tammemagi MC, Mayo JR, Roberts H, Liu G, Soghrati K, Yasufuku K, Martel S, Laberge F, Gingras M et al (2013) Probability of cancer in pulmonary nodules detected on first screening CT. N Engl J Med 369:910–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyazaki K, Yamaguchi M, Imai H, Kobayashi K, Tamaru S, Kobayashi T, Shiku H, Katayama N (2015) Gene expression profiling of diffuse large B-Cell lymphomas supervised by CD5 expression. Int J Hematol 102:188–194

    Article  CAS  PubMed  Google Scholar 

  • National Lung Screening Trial Research T, Aberle DR, Adams AM, Berg CD, Black WC, Clapp JD, Fagerstrom RM, Gareen IF, Gatsonis C, Marcus PM et al (2011) Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med 365:395–409

    Article  Google Scholar 

  • Philibert R, Dogan M, Beach SRH, Mills JA, Long JD (2020) AHRR methylation predicts smoking status and smoking intensity in both saliva and blood DNA. Am J Med Genet B Neuropsychiatr Genet 183:51–60

    Article  CAS  PubMed  Google Scholar 

  • Robertson KD (2005) DNA methylation and human disease. Nat Rev Genet 6:597–610

    Article  CAS  PubMed  Google Scholar 

  • Rosenwald A, Wright G, Chan WC, Connors JM, Campo E, Fisher RI, Gascoyne RD, Muller-Hermelink HK, Smeland EB, Giltnane JM et al (2002) The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med 346:1937–1947

    Article  PubMed  Google Scholar 

  • Sandanger TM, Nost TH, Guida F, Rylander C, Campanella G, Muller DC, van Dongen J, Boomsma DI, Johansson M, Vineis P et al (2018) DNA methylation and associated gene expression in blood prior to lung cancer diagnosis in the Norwegian Women and Cancer cohort. Sci Rep 8:16714

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schmidt B, Liebenberg V, Dietrich D, Schlegel T, Kneip C, Seegebarth A, Flemming N, Seemann S, Distler J, Lewin J et al (2010) SHOX2 DNA methylation is a biomarker for the diagnosis of lung cancer based on bronchial aspirates. BMC Cancer 10:600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegel RL, Miller KD, Jemal A (2020) Cancer statistics, 2020. CA Cancer J Clin 70:7–30

    Article  PubMed  Google Scholar 

  • Song W, Ma Y, Wang J, Brantley-Sieders D, Chen J (2014) JNK signaling mediates EPHA2-dependent tumor cell proliferation, motility, and cancer stem cell-like properties in non-small cell lung cancer. Cancer Res 74:2444–2454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Travis WD, Brambilla E, Nicholson AG, Yatabe Y, Austin JHM, Beasley MB, Chirieac LR, Dacic S, Duhig E, Flieder DB et al (2015) The 2015 World Health Organization classification of lung tumors: impact of genetic, clinical and radiologic advances since the 2004 classification. J Thorac Oncol 10:1243–1260

    Article  PubMed  Google Scholar 

  • Umbricht CB, Evron E, Gabrielson E, Ferguson A, Marks J, Sukumar S (2001) Hypermethylation of 14-3-3 sigma (stratifin) is an early event in breast cancer. Oncogene 20:3348–3353

    Article  CAS  PubMed  Google Scholar 

  • Wiltshire C, Gillespie DA, May GH (2004) Sab (SH3BP5), a novel mitochondria-localized JNK-interacting protein. Biochem Soc Trans 32:1075–1077

    Article  CAS  PubMed  Google Scholar 

  • Win S, Than TA, Fernandez-Checa JC, Kaplowitz N (2014) JNK interaction with Sab mediates ER stress induced inhibition of mitochondrial respiration and cell death. Cell Death Dis 5:e989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao P, Chen JR, Zhou F, Lu CX, Yang Q, Tao GH, Tao YJ, Chen JL (2014) Methylation of P16 in exhaled breath condensate for diagnosis of non-small cell lung cancer. Lung Cancer 83:56–60

    Article  PubMed  Google Scholar 

  • Yamadori T, Baba Y, Matsushita M, Hashimoto S, Kurosaki M, Kurosaki T, Kishimoto T, Tsukada S (1999) Bruton’s tyrosine kinase activity is negatively regulated by Sab, the Btk-SH3 domain-binding protein. Proc Natl Acad Sci USA 96:6341–6346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeilinger S, Kuhnel B, Klopp N, Baurecht H, Kleinschmidt A, Gieger C, Weidinger S, Lattka E, Adamski J, Peters A et al (2013) Tobacco smoking leads to extensive genome-wide changes in DNA methylation. PloS One 8:e63812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Schottker B, Ordonez-Mena J, Holleczek B, Yang R, Burwinkel B, Butterbach K, Brenner H (2015) F2RL3 methylation, lung cancer incidence and mortality. Int J Cancer 137:1739–1748

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Jun Wang and Yujie Wei from Nanjing TANTICA Biotechnology Co. Ltd for their contribution to the sample processing. This work was supported by the Nanjing Social Supporting Department and Social Supporting Ministry of Jiangsu Province (Grant no. 20182020) and by the Nanjing TANTICA Co. Ltd with Grant number 2018LC01.1.

Author information

Authors and Affiliations

Authors

Contributions

Material preparation, data collection and analysis were performed by CL, FD and ZZ. The first draft of the manuscript was written by RQ and RZ. Conception or design of the work, data interpretation and critical revision of the article were performed by RY and BH. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Baohui Han or Rongxi Yang.

Ethics declarations

Conflict of interest

Rong Qiao, Runbo Zhong, Chunlan Liu, Feifei Di, Zheng Zhang, Ling Wang, Tian Xu, Yue Wang, Liping Dai, Wanjian Gu, Baohui Han and Rongxi Yang declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, R., Zhong, R., Liu, C. et al. Novel blood-based hypomethylation of SH3BP5 is associated with very early-stage lung adenocarcinoma. Genes Genom 44, 445–453 (2022). https://doi.org/10.1007/s13258-021-01190-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-021-01190-0

Keywords

Navigation