Skip to main content
Log in

Diagnostic and therapeutic biomarkers for Alzheimer’s disease in human-derived platelets

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Background

Diagnosis of current Alzheimer’s disease (AD) is difficult even for medical specialists, and there is no clear biomarker. Also, aging is highly related to the onset of AD.

Objectives

The purpose of this study is to screen miRNA as an aging-considered biomarker for AD treatment and diagnosis.

Methods

The patient group for this study was divided into a young normal, old normal, or AD group. We developed a method of discovering sequentially expressed miRNAs to distinguish miRNAs that were sequentially expressed in the three groups.

Results

Sequentially expressed miRNAs correlated highly with the patient’s age, and most showed expression patterns that distinguished young, old, and AD. Specifically, the miRNA expression we found showed similar patterns in the brains of patients with AD. Among the selected miRNAs, one set derived from the same precursor: The expression of miR-150 was a disease- and age-specific downregulation in both 3p and 5p forms, and the precursor also had the same pattern. We named that triple matching. Also, the found miR-150 precursor had AD-specific miRNA-imbalance characteristics.

Conclusions

We developed a novel AD diagnostic method using triple matching and miRNA-imbalance. The triple matching and miRNA imbalance-based relative ratio diagnosis method we developed will be very powerful in resolving the challenges of absolute diagnostic quantification based on biomarker expression. Also, our research results suggest the possibility of a treatment target for AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bartzokis G (2011) Alzheimer’s disease as homeostatic responses to age-related myelin breakdown. Neurobiol Aging 32:1341–1371

    Article  CAS  PubMed  Google Scholar 

  • Bissels U, Wild S, Tomiuk S, Holste A, Hafner M, Tuschl T, Bosio A (2009) Absolute quantification of microRNAs by using a universal reference. RNA 15:2375–2384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boese AS, Saba R, Campbell K, Majer A, Medina S, Burton L, Booth TF, Chong P, Westmacott G, Dutta SM (2016) MicroRNA abundance is altered in synaptoneurosomes during prion disease . Mol Cell Neurosci 71:13–24

    Article  CAS  PubMed  Google Scholar 

  • Cai W, Zhang Y, Liu Y, Liu H, Zhang Z, Su Z (2019) Effects of miR-150 on neuropathic pain process via targeting AKT3. Biochem Biophys Res Commun 517:532–537

    Article  CAS  PubMed  Google Scholar 

  • Catricala S, Torti M, Ricevuti G (2012) Alzheimer disease and platelets: how’s that relevant. Immunity Ageing 9:20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Celsis P (2000) Age-related cognitive decline, mild cognitive impairment or preclinical Alzheimer’s disease? Ann Med 32:6–14

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Sun H, Wang C, Yang Y, Zhang M, Wong G (2018) miRNA arm switching identifies novel tumour biomarkers. EBioMedicine 38:37–46

    Article  PubMed  PubMed Central  Google Scholar 

  • Coen RF, Robertson DA, Kenny RA, King-Kallimanis BL (2016) Strengths and limitations of the MoCA for assessing cognitive functioning: Findings from a large representative sample of Irish older adults. J Geriatr Psychiatry Neurol 29:18–24

    Article  PubMed  Google Scholar 

  • Cui H, Xu Z, Qu C (2020) Tetramethylpyrazine ameliorates isoflurane induced cognitive dysfunction by inhibiting neuroinflammation via miR 150 in rats. Exp Therap Med 20:3878–3887

    Article  CAS  Google Scholar 

  • Dement A (2016) Alzheimer’s disease facts and figures. Alzheimer’s Dementia 12:459–509

    Article  Google Scholar 

  • Dolgin E (2018) Alzheimer’s disease is getting easier to spot. Nature 559:S10

    Article  CAS  PubMed  Google Scholar 

  • Dostal DE, Rothblum KN, Baker KM (1994) An improved method for absolute quantification of mRNA using multiplex polymerase chain reaction: determination of renin and angiotensinogen mRNA levels in various tissues. Anal Biochem 223:239–250

    Article  CAS  PubMed  Google Scholar 

  • Geekiyanage H, Jicha GA, Nelson PT, Chan C (2012) Blood serum miRNA: non-invasive biomarkers for Alzheimer’s disease. Exp Neurol 235:491–496

    Article  CAS  PubMed  Google Scholar 

  • Griffiths-Jones S, Hui JH, Marco A, Ronshaugen M (2011) MicroRNA evolution by arm switching. EMBO Rep 12:172–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grundman M, Petersen RC, Ferris SH, Thomas RG, Aisen PS, Bennett DA, Foster NL, Jack CR Jr, Galasko DR, Doody R (2004) Mild cognitive impairment can be distinguished from Alzheimer disease and normal aging for clinical trials. Arch Neurol 61:59–66

    Article  PubMed  Google Scholar 

  • Hébert SS, De Strooper B (2009) Alterations of the microRNA network cause neurodegenerative disease. Trends Neurosci 32:199–206

    Article  PubMed  CAS  Google Scholar 

  • Hohman TJ, Tommet D, Marks S, Contreras J, Jones R, Mungas D, Alzheimer’s Neuroimaging Initiative (2017) Evaluating Alzheimer’s disease biomarkers as mediators of age-related cognitive decline. Neurobiol Aging 58:120–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji L, Shi J, Lu J, Huang Q (2018) MiR-150 alleviates neuropathic pain via inhibiting toll‐like receptor 5. J Cell Biochem 119:1017–1026

    Article  CAS  PubMed  Google Scholar 

  • Jonsson T, Atwal JK, Steinberg S, Snaedal J, Jonsson PV, Bjornsson S, Stefansson H, Sulem P, Gudbjartsson D, Maloney J (2012) A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline. Nature 488:96–99

    Article  CAS  PubMed  Google Scholar 

  • Junn E, Mouradian MM (2012) MicroRNAs in neurodegenerative diseases and their therapeutic potential. Pharmacol Ther 133:142–150

    Article  CAS  PubMed  Google Scholar 

  • Keshavan A, Heslegrave A, Zetterberg H, Schott JM (2017) Blood biomarkers for Alzheimer’s disease: much promise cautious progress. Mol Diagn Ther 21:13–22

    Article  CAS  PubMed  Google Scholar 

  • Kondkar AA, Bray MS, Leal SM, Nagalla S, Liu DJ, Jin Y, Dong JF, Ren Q, Whiteheart SW, Shaw C (2010) VAMP8/endobrevin is overexpressed in hyperreactive human platelets: suggested role for platelet microRNA. J Thromb Haemostat 8:369–378

    Article  CAS  Google Scholar 

  • Koychev I, Gunn RN, Firouzian A, Lawson J, Zamboni G, Ridha B, Sahakian BJ, Rowe JB, Thomas A, Rochester L (2017) PET tau and amyloid-β burden in mild Alzheimer’s disease: divergent relationship with age, cognition, and cerebrospinal fluid biomarkers. J Alzheimer’s Dis 60:283–293

    Article  CAS  Google Scholar 

  • Landry P, Plante I, Ouellet DL, Perron MP, Rousseau G, Provost P (2009) Existence of a microRNA pathway in anucleate platelets. Nat Struct Mol Biol 16:961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lau P, Bossers K, Salta E, Frigerio CS, Barbash S, Rothman R, Sierksma AS, Thathiah A, Greenberg D, Papadopoulou AS (2013) Alteration of the microRNA network during the progression of Alzheimer’s disease. EBMO Mol Med 5:1613–1634

    CAS  Google Scholar 

  • Leidinger P, Backes C, Meder B, Meese E, Keller A (2014) The human miRNA repertoire of different blood compounds. BMC Genom 15:474

    Article  CAS  Google Scholar 

  • Levine ME, Lu AT, Bennett DA, Horvath S (2015) Epigenetic age of the pre-frontal cortex is associated with neuritic plaques, amyloid load, and Alzheimer’s disease related cognitive functioning. Aging(Albany, NY) 7:1198

    CAS  Google Scholar 

  • Liang L, Zheng YW, Wang YL (2020) miR-4429 Regulates the proliferation, migration, invasion, and epithelial-mesenchymal transition of cervical cancer by targeting FOXM1. Cancer Mang Res 12:5301

    CAS  Google Scholar 

  • Liu C, Wang J, Li L, Wang P (2014) MicroRNA-384 regulates both amyloid precursor protein and β-secretase expression and is a potential biomarker for Alzheimer’s disease. Int J Mol Med 34:160–166

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Ramirez MA, Reijerkerk A, De Vries HE, Romero IA (2016) Regulation of brain endothelial barrier function by microRNAs in health neuroinflammation. FASEB J 30:2662–2672

    Article  CAS  PubMed  Google Scholar 

  • Ludwig N, Leidinger P, Becker K, Backes C, Fehlmann T, Pallasch C, Rheinheimer S, Meder B, Stähler C, Meese E (2016) Distribution of miRNA expression across human tissues. Nucleic Acids Res 44:3865–3877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lugli G, Cohen AM, Bennett DA, Shah RC, Fields CJ, Hernandez AG, Smalheiser NR (2015) Plasma exosomal miRNAs in persons with and without Alzheimer disease: altered expression and prospects for biomarkers. PLos One 10:e0139233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lyketsos CG (2006) Task Force of American Association for Geriatric Psychiatry. Position statement of the American Association for Geriatric Psychiatry regarding principles of care for patients with dementia resulting from Alzheimer disease. Am J Geriatr Psychiatry 14:561–572

    Article  PubMed  Google Scholar 

  • Mattsson N, Zetterberg H, Hansson O, Andreasen N, Parnetti L, Jonsson M, Herukka S, van der Flier, Wiesje M, Blankenstein MA, Ewers M (2009) CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment. JAMA 302:385–393

    Article  CAS  PubMed  Google Scholar 

  • Mattsson N, Rosen E, Hansson O, Andreasen N, Parnetti L, Jonsson M, Herukka S, Van Der Flier WM, Blankenstein MA, Ewers M (2012) Age and diagnostic performance of Alzheimer disease. CSF Biomark 78:468–476

    CAS  Google Scholar 

  • Morris JC, Storandt M, Miller JP, McKeel DW, Price JL, Rubin EH, Berg L (2001) Mild cognitive impairment represents early-stage Alzheimer disease. Arch Neurol 58:397–405

    CAS  PubMed  Google Scholar 

  • Murray MJ, Bell E, Raby KL, Rijlaarsdam MA, Gillis AJ, Looijenga LH, Brown H, Destenaves B, Nicholson JC, Coleman N (2016) A pipeline to quantify serum and cerebrospinal fluid microRNAs for diagnosis and detection of relapse in paediatric malignant germ-cell tumours. Br J Cancer 114:151–162

    Article  CAS  PubMed  Google Scholar 

  • Nagalla S, Shaw C, Kong X, Kondkar AA, Edelstein LC, Ma L, Chen J, McKnight GS, López JA, Yang L (2011) Platelet microRNA-mRNA coexpression profiles correlate with platelet reactivity. Blood 117:5189–5197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson PT, Wang W, Rajeev BW (2008) MicroRNAs (miRNAs) in neurodegenerative diseases. Brain Pathol 18:130–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petersen RC, Doody R, Kurz A, Mohs RC, Morris JC, Rabins PV, Ritchie K, Rossor M, Thal L, Winblad B (2001) Current concepts in mild cognitive impairment. Arch Neurol 58:1985–1992

    Article  CAS  PubMed  Google Scholar 

  • Riancho J, Vázquez-Higuera JL, Pozueta A, Lage C, Kazimierczak M, Bravo M, Calero M, Gonalezález A, Rodríguez E, Lleo A (2017) MicroRNA profile in patients with Alzheimer’s disease: analysis of miR-9-5p and miR-598 in raw and exosome enriched cerebrospinal fluid samples. J Alzheimer’s Dis 57:483–491

    Article  CAS  Google Scholar 

  • Rinnerthaler G, Hackl H, Gampenrieder SP, Hamacher F, Hufnagl C, Hauser-Kronberger C, Zehentmayr F, Fastner G, Sedlmayer F, Mlineritsch B (2016) miR-16-5p is a stably-expressed housekeeping microRNA in breast cancer tissues from primary tumors and from metastatic sites. Int J Mol Sci 17:156

    Article  PubMed Central  CAS  Google Scholar 

  • Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J, Müller M (2011) pROC: an open-source package for R and S to analyze and compare ROC curves. BMC Bioinformatics 12:77

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmand B, Eikelenboom P, Van Gool WA, Alzheimer’s Disease Neuroimaging Initiative (2011) Value of neuropsychological tests, neuroimaging, and biomarkers for diagnosing Alzheimer’s disease in younger and older age cohorts. J Am Geriatr Soc 59:1705–1710

    Article  PubMed  Google Scholar 

  • Sevush S, Jy W, Horstman LL, Mao W, Kolodny L, Ahn YS (1998) Platelet activation in Alzheimer disease. Arch Neurol 55:530–536

    Article  CAS  PubMed  Google Scholar 

  • Sinha M, Ghose J, Bhattarcharyya NP (2011) Micro RNA-214,-150,-146a and-125b target. Huntingtin Gene 8:1005–1021

    CAS  Google Scholar 

  • Stewart S, O’Riley A, Edelstein B, Gould C (2012a) A preliminary comparison of three cognitive screening instruments in long term care: The MMSE, SLUMS, and MoCA. Clin Gerontol 35:57–75

    Article  Google Scholar 

  • Stewart S, O’Riley A, Edelstein B, Gould C (2012b) A preliminary comparison of three cognitive screening instruments in long term care: The MMSE, SLUMS, and MoCA. Clin Gerontol 35:57–75

    Article  Google Scholar 

  • Sun H, Chen Y (2019) MicroRNA expression profiles across blood and different tissues in cattle. Sci Data 6:190013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vos SJ, Van Rossum IA, Verhey F, Knol DL, Soininen H, Wahlund L, Hampel H, Tsolaki M, Minthon L, Frisoni GB (2013) Prediction of Alzheimer disease in subjects with amnestic and nonamnestic. MCI 80:1124–1132

    Google Scholar 

  • Voyle N, Baker D, Burnham SC, Covin A, Zhang Z, Sangurdekar DP, Tan Hehir CA, Bazenet C, Lovestone S, Kiddle S (2015) Blood protein markers of neocortical amyloid-β burden: a candidate study using SOMAscan technology. J Alzheimer’s Dis 46:947–961

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science, and Technology (2016R1C1B2007025) and by the National Dementia Research and Development Program of the Korea Health Industry Development Institute (KHIDI) funded by the Korean government (Ministry of Health and Welfare) (HI18C1671).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin-Hyeob Ryu or Hyun-Jeong Cho.

Ethics declarations

Comflict of interest

Jae-Woong Min, Jina Lee, Hui-Jin Mun, Dae Hoon Kim, Byeong-Gyu Park, Bora Yoon, Jin-Hyeob Ryu, and Hyun-Jeong Cho declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 844 kb)

Supplementary file1 (XlSX 39 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Min, JW., Lee, J., Mun, HJ. et al. Diagnostic and therapeutic biomarkers for Alzheimer’s disease in human-derived platelets. Genes Genom 42, 1467–1475 (2020). https://doi.org/10.1007/s13258-020-01015-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-020-01015-6

Keywords

Navigation