Abstract
As cells age, they lose their ability to properly fold proteins, maintain protein folding, and eliminate misfolded proteins, which leads to the accumulation of abnormal protein aggregates and loss of protein homeostasis (proteostasis). Loss of proteostasis can accelerate aging and the onset of neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease. Mechanisms exist to prevent the detrimental effects of abnormal proteins that incorporate chaperones, autophagy, and the ubiquitin-proteasome system. These mechanisms are evolutionarily conserved across various species. Therefore, the effect of impaired proteostasis on aging has been studied using model organisms that are appropriate for aging studies. In this review, we focus on the relationship between proteostasis and aging, and factors that affect proteostasis in Drosophila. The manipulation of proteostasis can alter lifespan, modulate neurotoxicity, and delay the onset of neurodegeneration, indicating that proteostasis may be a novel pharmacological target for the development of treatments for various age-associated diseases.


Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Amerik AY, Hochstrasser M (2004) Mechanism and function of deubiquitinating enzymes. Biochim Biophys Acta 1695:189–207. doi:https://doi.org/10.1016/j.bbamcr.2004.10.003
Aparicio R, Rana A, Walker DW (2019) Upregulation of the autophagy adaptor p62/SQSTM1 prolongs health and lifespan in middle-aged Drosophila . Cell Rep 28:1029-1040.e1025. https://doi.org/10.1016/j.celrep.2019.06.070
Auluck PK, Chan HYE, Trojanowski JQ, Lee VM-Y, Bonini NM (2002) Chaperone suppression of α-synuclein toxicity in a Drosophila Model for Parkinson’s disease. Science 295:865–868. https://doi.org/10.1126/science.1067389
Bai H, Kang P, Hernandez AM, Tatar M (2013) Activin signaling targeted by insulin/dFOXO regulates aging and muscle proteostasis in Drosophila. PLOS Genet 9:e1003941. https://doi.org/10.1371/journal.pgen.1003941
Belozerov VE, Ratkovic S, McNeill H, Hilliker AJ, McDermott JC (2014) In vivo interaction proteomics reveal a novel p38 mitogen-activated protein kinase/Rack1 pathway regulating proteostasis in Drosophila muscle. Mol Cell Biol 34:474–484. https://doi.org/10.1128/MCB.00824-13
Ben-Zvi A, Miller EA, Morimoto RI (2009) Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging. Proc Natl Acad Sci 106:14914–14919. https://doi.org/10.1073/pnas.0902882106
Bhole D, Allikian MJ, Tower J (2004) Doxycycline-regulated over-expression of hsp22 has negative effects on stress resistance and life span in adult Drosophila melanogaster mechanisms of. Ageing Dev 125:651–663. https://doi.org/10.1016/j.mad.2004.08.010
Bingol B, Sheng M (2011) Deconstruction for reconstruction: the role of proteolysis in neural plasticity and disease . Neuron 69:22–32. https://doi.org/10.1016/j.neuron.2010.11.006
Birnbaum A, Chang K, Bai H (2020) FOXO regulates neuromuscular junction homeostasis during Drosophila aging. bioRxiv
Chakraborty J et al (2018) USP14 inhibition corrects an in vivo model of impaired mitophagy. EMBO Mol Med 10:e9014. doi:https://doi.org/10.15252/emmm.201809014
Cornelissen T, Vilain S, Vints K, Gounko N, Verstreken P, Vandenberghe W (2018) Deficiency of parkin and PINK1 impairs age-dependent mitophagy in Drosophila. eLife 7:e35878. https://doi.org/10.7554/eLife.35878
Demontis F, Perrimon N (2010) FOXO/4E-BP signaling in Drosophila muscles regulates organism-wide proteostasis during aging. Cell 143:813–825. https://doi.org/10.1016/j.cell.2010.10.007
Eisenberg T et al (2009) Induction of autophagy by spermidine promotes longevity. Nat Cell Biol 11:1305–1314. doi:https://doi.org/10.1038/ncb1975
Feng Y, He D, Yao Z, Klionsky DJ (2014) The machinery of macroautophagy. Cell Res 24:24–41. doi:https://doi.org/10.1038/cr.2013.168
Fernandez-Funez P et al (2009) In vivo generation of neurotoxic prion protein: role for Hsp70 in accumulation of misfolded isoforms . PLOS Genet 5:e1000507. https://doi.org/10.1371/journal.pgen.1000507
Fernandez-Funez P et al (2016) Holdase activity of secreted Hsp70 masks amyloid-beta42 neurotoxicity in Drosophila. Proc Natl Acad Sci USA 113:E5212–E5221. https://doi.org/10.1073/pnas.1608045113
Folgueras AR, Freitas-Rodriguez S, Velasco G, Lopez-Otin C (2018) Mouse models to disentangle the Hallmarks of human aging . Circ Res 123:905–924. https://doi.org/10.1161/CIRCRESAHA.118.312204
Gallastegui N, Groll M (2010) The 26S proteasome: assembly and function of a destructive machine. Trends Biochem Sci 35:634–642. https://doi.org/10.1016/j.tibs.2010.05.005
Glick D, Barth S, Macleod KF (2010) Autophagy: cellular and molecular mechanisms. J Pathol 221:3–12. doi:https://doi.org/10.1002/path.2697
Hanpude P, Bhattacharya S, Dey A, Maiti T (2015) Deubiquitinating enzymes in cellular signaling and disease regulation. IUBMB Life. https://doi.org/10.1002/iub.1402
Hansen M, Rubinsztein D, Walker D (2018) Autophagy as a promoter of longevity: insights from model organisms. Nat Rev Mol Cell Biol. https://doi.org/10.1038/s41580-018-0033-y
Hanson KA, Kim SH, Wassarman DA, Tibbetts RS (2010) Ubiquilin modifies TDP-43 toxicity in a Drosophila model of amyotrophic lateral sclerosis (ALS). J Biol Chem 285:11068–11072. https://doi.org/10.1074/jbc.C109.078527
Haslbeck M, Franzmann T, Weinfurtner D, Buchner J (2005) Some like it hot: the structure and function of small heat-shock proteins. Nat Struct Mol Biol 12:842–846. doi:https://doi.org/10.1038/nsmb993
Hetz C (2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 13:89–102. doi:https://doi.org/10.1038/nrm3270
Hipp MS, Kasturi P, Hartl FU (2019) The proteostasis network and its decline in ageing. Nat Rev Mol Cell Biol 20:421–435. https://doi.org/10.1038/s41580-019-0101-y
Huang Z, Ren S, Jiang Y, Wang T (2016) PINK1 and Parkin cooperatively protect neurons against constitutively active TRP channel-induced retinal degeneration in Drosophila . Cell Death Dis 7:e2179–e2179. https://doi.org/10.1038/cddis.2016.82
Jantrapirom S, Lo Piccolo L, Yoshida H, Yamaguchi M (2018) A new Drosophila model of Ubiquilin knockdown shows the effect of impaired proteostasis on locomotive and learning abilities. Exp Cell Res 362:461–471. https://doi.org/10.1016/j.yexcr.2017.12.010
Juhász G, Erdi B, Sass M, Neufeld TP (2007a) Atg7-dependent autophagy promotes neuronal health, stress tolerance, and longevity but is dispensable for metamorphosis in Drosophila . Genes Dev 21:3061–3066. https://doi.org/10.1101/gad.1600707
Juhász G, Puskás LG, Komonyi O, Érdi B, Maróy P, Neufeld TP, Sass M (2007b) Gene expression profiling identifies FKBP39 as an inhibitor of autophagy in larval Drosophila fat body. Cell Death Differ 14:1181–1190. https://doi.org/10.1038/sj.cdd.4402123
Jung T, Grune T (2013) The proteasome and the degradation of oxidized proteins: part I-structure of proteasomes. Redox Biol 1:178–182. https://doi.org/10.1016/j.redox.2013.01.004
Kaushik S, Cuervo AM (2015) Proteostasis aging. Nat Med 21:1406–1415. https://doi.org/10.1038/nm.4001
Kierdorf K et al (2020) Muscle function and homeostasis require cytokine inhibition of AKT activity in Drosophila. eLife 9:e51595
Kim E et al (2018) Dual function of USP14 deubiquitinase in cellular proteasomal activity and autophagic flux. Cell Rep 24:732–743. https://doi.org/10.1016/j.celrep.2018.06.058
Kurapati R, Passananti HB, Rose MR, Tower J (2000) Increased hsp22 RNA levels in Drosophila lines genetically selected for increased longevity . J Gerontol Ser A 55:B552–B559. https://doi.org/10.1093/gerona/55.11.B552
Langerak S et al (2018) The Drosophila TGF-beta/Activin-like ligands Dawdle and Myoglianin appear to modulate adult lifespan through regulation of 26S proteasome function in adult muscle. Biol Open. https://doi.org/10.1242/bio.029454
Ling D, Song H-J, Garza D, Neufeld TP, Salvaterra PM (2009) Abeta42-induced neurodegeneration via an age-dependent autophagic-lysosomal injury in Drosophila. PLOS One 4:e4201. https://doi.org/10.1371/journal.pone.0004201
Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153:1194–1217. https://doi.org/10.1016/j.cell.2013.05.039
Marcora MS, Belfiori-Carrasco LF, Bocai NI, Morelli L, Castaño EM (2017) Amyloid-β42 clearance and neuroprotection mediated by X-box binding protein 1 signaling decline with aging in the Drosophila brain. Neurobiol Aging 60:57–70
Michaud S, Morrow G, Marchand J, Tanguay RM (2002) Drosophila small heat shock proteins: cell and organelle-specific chaperones? Prog Mol Subcell Biol 28:79–101. doi:https://doi.org/10.1007/978-3-642-56348-5_5
Moloney A, Sattelle DB, Lomas DA, Crowther DC (2010) Alzheimer’s disease: insights from Drosophila melanogaster models. Trends Biochem Sci 35:228–235. https://doi.org/10.1016/j.tibs.2009.11.004
Morrow G, Tanguay RM (2015) Drosophila melanogaster Hsp22: a mitochondrial small heat shock protein influencing the aging process. Front Genet. https://doi.org/10.3389/fgene.2015.00103
Morrow G, Samson M, Michaud S, Tanguay R (2004) Overexpression of the small mitochondrial Hsp22 extends Drosophila life span and increases resistance to oxidative stress. FASEB J 18:598–599. https://doi.org/10.1096/fj.03-0860fje
Munkácsy E, Chocron ES, Quintanilla L, Gendron CM, Pletcher SD, Pickering AM (2019) Neuronal-specific proteasome augmentation via Prosβ5 overexpression extends lifespan and reduces age-related cognitive decline . Aging Cell 18:e13005. https://doi.org/10.1111/acel.13005
Nguyen NN et al (2019) Proteasome β5 subunit overexpression improves proteostasis during aging and extends lifespan in Drosophila melanogaster . Sci Rep 9:3170. https://doi.org/10.1038/s41598-019-39508-4
Ojelade SA et al (2019) cindr, the Drosophila homolog of the CD2AP Alzheimer’s disease risk gene, is required for synaptic transmission and proteostasis . Cell Rep 28:1799–1813 (e1795)
Pandey UB et al (2007) HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 447:860–864. doi:https://doi.org/10.1038/nature05853
Piper MD, Partridge L (2018) Drosophila as a model for ageing . Biochim Biophys Acta (BBA) Mol Basis Dis 1864:2707–2717
Priya S, Sharma SK, Goloubinoff P (2013) Molecular chaperones as enzymes that catalytically unfold misfolded polypeptides. FEBS Lett 587:1981–1987. doi:https://doi.org/10.1016/j.febslet.2013.05.014
Rana A, Rera M, Walker DW (2013) Parkin overexpression during aging reduces proteotoxicity, alters mitochondrial dynamics, and extends lifespan. Proc Natl Acad Sci 110:8638–8643. https://doi.org/10.1073/pnas.1216197110
Rodriguez-Fernandez IA, Qi Y, Jasper H (2019) Loss of a proteostatic checkpoint in intestinal stem cells contributes to age-related epithelial dysfunction. Nat Commun 10:1–15
Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8:519–529. https://doi.org/10.1038/nrm2199
Ryan SM et al (2019) Drosophila p38 MAPK Interacts with BAG-3/starvin to regulate age-dependent protein homeostasis. bioRxiv:552729
Saibil H (2013) Chaperone machines for protein folding, unfolding and disaggregation. Nat Rev Mol Cell Biol 14:630–642. https://doi.org/10.1038/nrm3658
Santra M, Dill KA, de Graff AMR (2019) Proteostasis collapse is a driver of cell aging and death. Proc Natl Acad Sci 116:22173–22178. https://doi.org/10.1073/pnas.1906592116
Schinaman JM, Rana A, Ja WW, Clark RI, Walker DW (2019) Rapamycin modulates tissue aging and lifespan independently of the gut microbiota in Drosophila . Sci Rep 9:7824. https://doi.org/10.1038/s41598-019-44106-5
Si H et al (2019) Overexpression of pink1 or parkin in indirect flight muscles promotes mitochondrial proteostasis and extends lifespan in Drosophila melanogaster. PLoS One 14:e0225214. https://doi.org/10.1371/journal.pone.0225214
Simonsen A, Cumming RC, Brech A, Isakson P, Schubert DR, Finley KD (2008) Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult Drosophila . Autophagy 4:176–184. https://doi.org/10.4161/auto.5269
Taylor JP, Hardy J, Fischbeck KH (2002) Toxic proteins in neurodegenerative disease. Science 296:1991–1995. https://doi.org/10.1126/science.1067122
Tonoki A, Kuranaga E, Tomioka T, Hamazaki J, Murata S, Tanaka K, Miura M (2009) Genetic evidence linking age-dependent attenuation of the 26S proteasome with the aging process. Mol Cell Biol 29:1095–1106. doi:https://doi.org/10.1128/MCB.01227-08
Tsakiri EN et al (2019) Hyperactivation of Nrf2 increases stress tolerance at the cost of aging acceleration due to metabolic deregulation. Aging Cell 18:e12845
Tsakiri EN, Iliaki KK, Höhn A, Grimm S, Papassideri IS, Grune T, Trougakos IP (2013a) Diet-derived advanced glycation end products or lipofuscin disrupts proteostasis and reduces life span in Drosophila melanogaster. Free Radic Biol Med 65:1155–1163
Tsakiri EN, Sykiotis GP, Papassideri IS, Gorgoulis VG, Bohmann D, Trougakos IP (2013b) Differential regulation of proteasome functionality in reproductive vs. somatic tissues of Drosophila during aging or oxidative stress. FASEB J 27:2407–2420. doi:https://doi.org/10.1096/fj.12-221408
Vernace VA, Arnaud L, Schmidt-Glenewinkel T, Figueiredo-Pereira ME (2007) Aging perturbs 26S proteasome assembly in Drosophila melanogaster. FASEB J 21:2672–2682. https://doi.org/10.1096/fj.06-6751com
von Stockum S et al (2019) Inhibition of the deubiquitinase USP8 corrects a Drosophila PINK1 model of mitochondria dysfunction. Life Sci Alliance 2:e201900392. https://doi.org/10.26508/lsa.201900392
Vrailas-Mortimer A et al (2011) A muscle-specific p38 MAPK/Mef2/MnSOD pathway regulates stress, motor function, and life span in Drosophila. Dev Cell 21:783–795. https://doi.org/10.1016/j.devcel.2011.09.002
Wang L et al (2019) JNK modifies neuronal metabolism to promote proteostasis and longevity. Aging Cell 18:e12849. doi:https://doi.org/10.1111/acel.12849
Wang L, Zeng X, Ryoo HD, Jasper H (2014) Integration of UPRER and oxidative stress signaling in the control of intestinal stem cell proliferation . PLOS Genet 10:e1004568. https://doi.org/10.1371/journal.pgen.1004568
Wang L, Ryoo HD, Qi Y, Jasper H (2015) PERK limits Drosophila lifespan by promoting intestinal stem cell proliferation in response to ER stress . PLoS Genet 11:e1005220. https://doi.org/10.1371/journal.pgen.1005220
Warrick JM, Chan HYE, Gray-Board GL, Chai Y, Paulson HL, Bonini NM (1999) Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nat Genet 23:425–428. https://doi.org/10.1038/70532
Wu Z et al (2019) MISTERMINATE mechanistically links mitochondrial dysfunction with proteostasis failure . Mol Cell 75:835–848.e838. https://doi.org/10.1016/j.molcel.2019.06.031
Wu H, Wang MC, Bohmann D (2009) JNK protects Drosophila from oxidative stress by trancriptionally activating autophagy. Mech Dev 126:624–637. https://doi.org/10.1016/j.mod.2009.06.1082
Xiao C et al (2019) Expression of heat shock protein 70 is insufficient to extend Drosophila melanogaster longevity. bioRxiv. https://doi.org/10.1101/753269
Xu P, Das M, Reilly J, Davis RJ (2011) JNK regulates FoxO-dependent autophagy in neurons. Genes Dev 25:310–322. doi:https://doi.org/10.1101/gad.1984311
Yang Y et al (2006) Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proc Natl Acad Sci 103:10793–10798. https://doi.org/10.1073/pnas.0602493103
Acknowledgements
We apologize to the authors whose publications have not been cited due to space limitations. This research was supported by the Basic Science Research Program of the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science, and Technology (Grant No. 2020R1A2B5B01098063). This research was supported by the Chung-Ang University Graduate Research Scholarship in 2019.
Author information
Authors and Affiliations
Contributions
GY and SH wrote the paper and read and approved the final manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Yu, G., Hyun, S. Proteostasis-associated aging: lessons from a Drosophila model. Genes Genom 43, 1–9 (2021). https://doi.org/10.1007/s13258-020-01012-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13258-020-01012-9


