Skip to main content
Log in

Molecular characterization of Arabidopsis thaliana LSH1 and LSH2 genes

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Background

Arabidopsis thaliana genome encodes ten DUF640 (short for domain of unknown function 640)/ALOG (short for Arabidopsis LSH1 and Oryza G1) proteins, also known as light-dependent short hypocotyl (LSH) proteins. While some of the LSH genes regulate organ boundary determination and shade avoidance response, the function of most of these genes remains largely unknown.

Objective

In this study, we aimed to characterize the function of AtLSH1 and AtLSH2 in Arabidopsis.

Methods

We overexpressed AtLSH1 and AtLSH2 (with or without the FLAG tag) in Arabidopsis Col-0 plants under the control of the 35S promoter. We also generated knockout or knockdown lines of these genes by miRNA-induced gene silencing (MIGS). We conducted intensive phenotypic analysis of these transgenic lines, and finally performed RNA-seq analysis of two AtLSH2 overexpression (OX) lines.

Results

Although AtLSH1 and AtLSH2 amino acid sequences showed high similarly, AtLSH2-OX lines showed much higher levels of their transcripts than those of AtLSH1-OX lines. Additionally, overexpression of AtLSH1 and AtLSH2 greatly inhibited hypocotyl elongation in a light-independent manner, and reduced both vegetative and reproductive growth. However, knockout or knockdown of both these AtLSH genes did not affect plant phenotype. Gene Ontology (GO) analysis of differentially expressed genes (DEGs) identified by RNA-seq revealed enrichment of the GO term ‘response to stimulus’, included phytohormone-responsive genes; however, genes responsible for the abnormal phenotypes of AtLSH2-OX lines could not be identified.

Conclusion

Although our data revealed no close association between light and phytohormone signaling components, overexpression of AtLSH1 and AtLSH2 greatly reduced vegetative and reproductive growth of Arabidopsis plants. This property could be used to generate new plants by regulating expression of AtLSH1 and AtLSH2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alabadí D, Gil J, Blázquez MA, García-Martínez JL (2004) Gibberellins repress photomorphogenesis in darkness. Plant Physiol 134:1050–1057

    Article  Google Scholar 

  • Chapman EJ, Estelle M (2009) Mechanism of auxin-regulated gene expression in plants. Annu Rev Genet 43:265–285

    Article  CAS  Google Scholar 

  • Cho E, Zambryski PC (2011) Organ boundary1 defines a gene expressed at the junction between the shoot apical meristem and lateral organs. Proc Natl Acad Sci USA 108:2154–2159

    Article  CAS  Google Scholar 

  • Cho SK, Kang IH, Carr T, Hannapel DJ (2012) Using the yeast three-hybrid system to identify proteins that interact with a phloem-mobile mRNA. Front Plant Sci 3:189

    Article  CAS  Google Scholar 

  • Clough SJ, Bend AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  Google Scholar 

  • Cox MP, Peterson DA, Biggs PJ (2010) SolexaQA: At-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinform 11:485

    Article  Google Scholar 

  • De Felippes FF, Wang JW, Weigel D (2012) MIGS: miRNA-induced gene silencing. Plant J 70:541–547

    Article  Google Scholar 

  • Dong X, Lee J, Nou IS, Hur Y (2014) Expression characteristics of LSH genes in Brassica suggest their applicability for modification of leaf morphology and the use of their promoter for transgenesis. Plant Breed Biotechnol 2:126–138

    Article  Google Scholar 

  • Guo X, He K, Yang H, Yuan T, Lin H, Clouse SD, Li J (2010) Genome-wide cloning and sequence analysis of leucine-rich repeat receptor-like protein kinase genes in Arabidopsis thaliana. BMC Genom 11:19

    Article  Google Scholar 

  • Ha CM, Jun JH, Nam HG, Fletcher JC (2007) BLADE-ON-PETIOL1 and 2 control Arabidopsis lateral organ fate through regulation of LOB domain and adaxial-abaxial polarity genes. Plant Cell 19:1809–1825

    Article  CAS  Google Scholar 

  • Hayashi Y, Takahashi K, Inoue S, Kinoshita T (2014) Abscisic acid suppresses hypocotyl elongation by dephosphorylating plasma membrane H(+)-ATPase in Arabidopsis thaliana. Plant Cell Physiol 55:845–853

    Article  CAS  Google Scholar 

  • Huerta-Cepas J, Serra F, Bork P (2016) ETE 3: Reconstruction, analysis, and visualization of phylogenomic data. Mol Biol Evol 33:1635–1638

    Article  CAS  Google Scholar 

  • Iyer LM, Arvind L (2012) ALOG domains: provenance of plant homeotic and developmental regulators from the DNA-binding domain of a novel class of DIRS1-type retroposons. Biol Direct 7:39

    Article  CAS  Google Scholar 

  • Kohnen MV, Schmid-Siegert E, Trevisan M, Petrolati LA, Sénéchal F, Müller-Moulé P, Maloof J, Xenarios I, Fankhauser C (2016) Neighbor detection induces organ-specific transcriptomes, revealing patterns underlying hypocotyl-specific growth. Plant Cell 28:2889–2904

    Article  CAS  Google Scholar 

  • Kwok CS, Barris S, Burns J (2010) Increasing low light tolerance in plants. US Patent US2010/0119688A1. May 13

  • Lee J, Dong X, Choi K, Song H, Yi H, Hur Y (2020) Identification of source-sink tissues in the leaf of Chinese cabbage (Brassica rapa ssp. pekinensis) by carbohydrate content and transcriptomic analysis. Genes Genom 42:13–24

    Article  CAS  Google Scholar 

  • Li X, Sun L, Tan L, Liu F, Zhu Z, Fu Y, Sun X, Sun X, Xie D, Sun C (2012) TH1, a DUF640 domain-like gene controls lemma and palea development in rice. Plant Mol Biol 78:351–359

    Article  CAS  Google Scholar 

  • Lin T, Sharma P, Gonzalez DH, Viola IL, Hannapel DJ (2013) The impact of the long-distance transport of a BEL1-like messenger RNA on development. Plant Physiol 161:760–772

    Article  CAS  Google Scholar 

  • Liu C, Wang B, Li Z, Peng Z, Zhang J (2018) TsNAC1 is a key transcription factor in abiotic stress resistance and growth. Plant Physiol 176:742–756

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Lorrai R, Boccaccini A, Ruta V, Possenti M, Costantino P, Vittorioso P (2018) Abscisic acid inhibits hypocotyl elongation acting on gibberellins. DELLA proteins and auxin. AoB Plants 10:ply061

    CAS  PubMed  PubMed Central  Google Scholar 

  • MacAlister CA, Park SJ, Jinag K, Marcel F, Bendahmane A, Izkovich Y, Eshed Y, Lippman ZB (2012) Synchonization of the flowering transition by the tomato TERMINATING FLOWER gene. Nat Genet 44:1393–1398

    Article  CAS  Google Scholar 

  • Nguyen NH, Jeong CY, Kang GH, Yoo SD, Hong SW, Lee H (2015) MYBD employed by HY5 increases anthocyanin accumulation via repression of MYBL2 in Arabidopsis. Plant J 84:1192–1205

    Article  CAS  Google Scholar 

  • Oh E, Zhu JY, Bai MY, Arenhart RA, Sun Y, Wang ZY (2014) Cell elongation is regulated through a central circuit of interacting transcription factors in the Arabidopsis hypocotyl. Elife 3:e03031

    Article  Google Scholar 

  • Press MO, Queitsch C (2017) Variability in a short tandem repeat mediates complex epistatic interactions in Arabidopsis thaliana. Genetics 205:455–464

    Article  CAS  Google Scholar 

  • Price MN, Dehal PS, Arkin AP (2009) FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 26:1641–1650

    Article  CAS  Google Scholar 

  • Ramadoss N, Gupta D, Vaidya BN, Joshee N, Basu C (2018) Functional characterization of 1-aminocyclopropane-1-carboxylic acid oxidase gene in Arabidopsis thaliana and its potential in providing flood tolerance. Biochem Biophys Res Commun 503:365–370

    Article  CAS  Google Scholar 

  • Reed JW, Wu MF, Reeves PH, Hodgens C, Yadav V, Hayes S, Pierik R (2018) Three auxin response factors promote hypocotyl elongation. Plant Physiol 178:864–875

    Article  CAS  Google Scholar 

  • Shin J, Kim K, Kang H, Zulfugarov IS, Bae G, Lee CH, Lee D, Choi G (2009) Phytochromes promote seedling light responses by inhibiting four negatively-acting phytochrome-interacting factors. Proc Natl Acad Sci 106:7660–7665

    Article  CAS  Google Scholar 

  • Takeda S, Hanano K, Kariya A, Shimizu S, Zhao L, Matsui M, Tasaka M, Aida M (2011) CUP-SHAPED COTYLEDON1 transcription factor activates the expression of LSH4 and LSH3, two members of the ALOG gene family, in shoot organ boundary cells. Plant J 66:1066–1077

    Article  CAS  Google Scholar 

  • Teo ZW, Song S, Wang YQ, Liu J, Yu H (2014) New insights into the regulation of inflorescence architecture. Trends Plant Sci 19:158–165

    Article  CAS  Google Scholar 

  • Tian T, Liu Y, Yan H, You Q, Yi X, Du Z, Xu W, Su Z (2017) agriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res 45(W1):W122–W129

    Article  CAS  Google Scholar 

  • Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7:562–578

    Article  CAS  Google Scholar 

  • Tsukaya H (2013) Leaf Development. Arabidopsis Book 11:e0163

    Article  Google Scholar 

  • Vandenbussche F, Verbelen JP, Van Der Straeten D (2005) Of light and length: regulation of hypocotyl growth in Arabidopsis. BioEssays 27:275–284

    Article  CAS  Google Scholar 

  • Vernoux T, Brunoud G, Farcot E, Morin V, Van den Daele H, Legrand J, Oliva M, Das P, Larrieu A, Wells D, Guédon Y, Armitage L, Picard F, Guyomarc’h S, Cellier C, Parry G, Koumproglou R, Doonan JH, Estelle M, Godin C, Kepinski S, Bennett M, De Veylder L, Traas J (2011) The auxin signalling network translates dynamic input into robust patterning at the shoot apex. Mol Syst Biol 7:508

    Article  Google Scholar 

  • Yan DW, Zhou Y, Ye SH, Zeng LJ, Zhang XM, He ZH (2013) Beak-shaped grain 1/triangular hull 1, a DUF640 gene, is associated with grain shape, size and weight in rice. Sci China Life Sci 56:275–283

    Article  CAS  Google Scholar 

  • Yoshida A, Suzaki T, Tanaka W, Hirano HY (2009) The homeotic gene long sterile lemma (G1) specifies sterile lemma identity in the rice spikelet. Proc Natl Acad Sci USA 106:20103–20108

    Article  CAS  Google Scholar 

  • Yoshida A, Sasao M, Yasuno N, Takagi K, Daimon Y, Chen R, Yamazaki R, Tokunaga H, Kitaguchi Y, Sato Y, Nagamura Y, Ushijima T, Kumamaru T, Iida S, Maekawa M, Kyozuka J (2013) TAWAWA1, a regulator of rice inflorescence architecture, functions through the suppression of meristem phase transition. Proc Natl Acad Sci USA 110:767–772

    Article  CAS  Google Scholar 

  • Yu G, Wang LG, Han Y, He QY (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. Omics 16:284–287

    Article  CAS  Google Scholar 

  • Zhao L, Nakazawa M, Takase T, Manabe K, Kobayash M, Seki M, Shinozaki K, Matsui M (2004) Overexpression of LSH1, a member of an uncharacterised gene family, causes enhanced light regulation of seedling development. Plant J 37:694–706

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2014068885), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoonkang Hur.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, M., Dong, X., Song, H. et al. Molecular characterization of Arabidopsis thaliana LSH1 and LSH2 genes. Genes Genom 42, 1151–1162 (2020). https://doi.org/10.1007/s13258-020-00985-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-020-00985-x

Keywords

Navigation