Skip to main content

Advertisement

Log in

Tuberculosis risk is associated with genetic polymorphisms in the LRP2, CUBN, and VDR genes

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Background

Vitamin D (Vit. D) is used extensively during tuberculosis treatment. Low levels of serum Vit. D increase the risk of active tuberculosis development. Altered expression of the proteins involved in Vit. D metabolism impairs cathelicidin production, thereby increasing the host susceptibility to tuberculosis.

Objective

We are trying to investigate whether single nucleotide polymorphisms (SNPs) in LRP2, CUBN, and VDR genes could affect tuberculosis development.

Methods

We included participants of the Korean Association Resource (KARE), part of the Korean Genome and Epidemiology Study (KoGES), and used their recorded data. A total of 8840 people (4182 men and 4658 women) were eligible subjects. The 5-kb regions from the ends of transcripts of GC, LRP2, CUBN, and VDR genes were amplified to select 13, 47, 70, and 15 SNPs, respectively. For association analysis and statistical analysis, PLINK version 1.07 and PASW Statistics version 18.0 were used.

Results

Significant correlation was observed in 11, 2, and 1 SNPs in LRP2, CUBN, and VDR genes. The effect of rs6747692 of LRP2 on transcription factor binding was confirmed using RegulomeDB. We confirmed that rs2239182 of VDR is located in the genomic eQTL region and can affect transcription factor binding and gene expression.

Conclusions

Genetic polymorphisms in genes encoding proteins involved in Vit. D metabolism influence immune system components. Therefore, such polymorphisms may influence the susceptibility to Mycobacterium tuberculosis invasion and alter the defense mechanisms against Mycobacterium tuberculosis infection. The correlation between genetic variation and tuberculosis development can provide new guidelines for the management of tuberculosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Abel L, El-Baghdadi J, Bousfiha AA, Casanova JL, Schurr E (2014) Human genetics of tuberculosis: a long and winding road. Philos Trans R Soc Lond B Biol Sci 369:20130428

    Article  Google Scholar 

  • Afsal K, Selvaraj P, Harishankar M (2018) 1, 25-dihydroxyvitamin D3 downregulates cytotoxic effector response in pulmonary tuberculosis. Int Immunopharmacol 62:251–260

    Article  CAS  Google Scholar 

  • Anand SP, Selvaraj P (2009) Effect of 1, 25 dihydroxyvitamin D(3) on matrix metalloproteinases MMP-7, MMP-9 and the inhibitor TIMP-1 in pulmonary tuberculosis. Clin Immunol 133:126–131

    Article  CAS  Google Scholar 

  • Anand SP, Selvaraj P, Narayanan PR (2009) Effect of 1,25 dihydroxyvitamin D3 on intracellular IFN-gamma and TNF-alpha positive T cell subsets in pulmonary tuberculosis. Cytokine 45:105–110

    Article  Google Scholar 

  • Baeke F, Korf H, Overbergh L, Verstuyf A, Thorrez L, Van Lommel L, Waer M, Schuit F, Gysemans C, Mathieu C (2011) The vitamin D analog, TX527, promotes a human CD4+CD25highCD127low regulatory T cell profile and induces a migratory signature specific for homing to sites of inflammation. J Immunol 186:132–142

    Article  CAS  Google Scholar 

  • Bikle DD (2014) Vitamin D metabolism, mechanism of action, and clinical applications. Chem Biol 21:319–329

    Article  CAS  Google Scholar 

  • Carlberg C, Campbell MJ (2013) Vitamin D receptor signaling mechanisms: integrated actions of a well-defined transcription factor. Steroids 78:127–136

    Article  CAS  Google Scholar 

  • Charpy J, Dowling GB (1947) Vitamin D in cutaneous tuberculosis. Lancet 2(6472):398–399

    CAS  PubMed  Google Scholar 

  • Cho YS, Go MJ, Kim YJ, Heo JY, Oh JH, Ban HJ, Yoon D, Lee MH, Kim DJ, Park M et al (2009) A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat Genet 41:527–534

    Article  CAS  Google Scholar 

  • Christensen EI, Birn H, Storm T, Weyer K, Nielsen R (2012) Endocytic receptors in the renal proximal tubule. Physiology (Bethesda) 27:223–236

    CAS  Google Scholar 

  • Comstock GW (1978) Tuberculosis in twins: a re-analysis of the Prophit survey. Am Rev Respir Dis 117:621–624

    CAS  PubMed  Google Scholar 

  • Coussens A, Timms PM, Boucher BJ, Venton TR, Ashcroft AT, Skolimowska KH, Newton SM, Wilkinson KA, Davidson RN, Griffiths CJ et al (2009) 1α,25-dihydroxyvitamin D3 inhibits matrix metalloproteinases induced by Mycobacterium tuberculosis infection. Immunology 127:539–548

    Article  CAS  Google Scholar 

  • Dankers W, Colin EM, van Hamburg JP, Lubberts E (2017) Vitamin D in autoimmunity: molecular mechanisms and therapeutic potential. Front Immunol 7:697

    Article  Google Scholar 

  • Deluca HF, Cantorna MT (2001) Vitamin D: Its role and uses in immunology. FASEB J 15:2579–2585

    Article  CAS  Google Scholar 

  • Devi KR, Mukherjee K, Chelleng PK, Kalita S, Das U, Narain K (2018) Association of VDR gene polymorphisms and 22 bp deletions in the promoter region of TLR2Δ22 (-196-174) with increased risk of pulmonary tuberculosis: a case-control study in tea garden communities of Assam. J Clin Lab Anal 32:e22562

    Article  Google Scholar 

  • Dolin PJ, Raviglione MC, Kochi A (1994) Global tuberculosis incidence and mortality during 1990–2000. Bull World Health Organ 72:213–220

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao L, Tao Y, Zhang L, Jin Q (2010) Vitamin D receptor genetic polymorphisms and tuberculosis: updated systematic review and meta-analysis. Int J Tuberc Lung Dis 14:15–23

    CAS  PubMed  Google Scholar 

  • Jasmer RM, Nahid P, Hopewell PC (2002) Latent tuberculosis infection. N Engl J Med 347:1860–1866

    Article  Google Scholar 

  • Jeffery LE, Burke F, Mura M, Zheng Y, Qureshi OS, Hewison M, Walker LS, Lammas DA, Raza K, Sansom DM (2009) 1,25-dihydroxyvitamin D3 and IL-2 combine to inhibit T cell production of inflammatory cytokines and promote development of regulatory T cells expressing CTLA-4 and FoxP3. J Immunol 183:5458–5467

    Article  CAS  Google Scholar 

  • Jin HS, Cho JE, Park S (2019) Association between CD53 genetic polymorphisms and tuberculosis cases. Genes Genomics 41:389–395

    Article  CAS  Google Scholar 

  • Kim EH, Bae JM (2018) Vitamin D supplementation as a control program against latent tuberculosis infection in Korean high school students. Epidemiol Health 40:e2018035

    Article  Google Scholar 

  • Korenberg JR, Argraves KM, Chen XN, Tran H, Strickland DK, Argraves WS (1994) Chromosomal localization of human genes for the LDL receptor family member glycoprotein 330 (LRP2) and its associated protein RAP (LRPAP1). Genomics 22:88–93

    Article  CAS  Google Scholar 

  • Kozyraki R, Kristiansen M, Silahtaroglu A, Hansen C, Jacobsen C, Tommerup N, Verroust PJ, Moestrup SK (1998) The human intrinsic factor-vitamin B12 receptor, cubilin: Molecular characterization and chromosomal mapping of the gene to 10p within the autosomal recessive megaloblastic anemia (MGA1) region. Blood 91:3593–3600

    Article  CAS  Google Scholar 

  • Laplana M, Royo JL, Fibla J (2018) Vitamin D receptor polymorphisms and risk of enveloped virus infection: a meta-analysis. Gene 678:384–394

    Article  CAS  Google Scholar 

  • Martineau AR, Wilkinson RJ, Wilkinson KA, Newton SM, Kampmann B, Hall BM, Packe GE, Davidson RN, Eldridge SM, Maunsell ZJ et al (2007) A single dose of vitamin D enhances immunity to mycobacteria. Am J Respir Crit Care Med 176:208–213

    Article  CAS  Google Scholar 

  • Mikkelsen M, Jacobsen P, Henningsen K (1977) Possible localization of Gc-system on chromosome 4. loss of long arm 4 material associated with father-child incompatibility within the Gc-system. Hum Hered 27:105–107

    Article  CAS  Google Scholar 

  • Möller M, Hoal EG (2010) Current findings, challenges and novel approaches in human genetic susceptibility to tuberculosis. Tuberculosis (Edinb) 90:71–83

    Article  Google Scholar 

  • Moretti R, Morelli ME, Caruso P (2018) Vitamin D in neurological diseases: a rationale for a pathogenic impact. Int J Mol Sci 19:2245

    Article  Google Scholar 

  • Nnoaham KE, Clarke A (2008) Low serum vitamin D levels and tuberculosis: a systematic review and meta-analysis. Int J Epidemiol 37:113–119

    Article  Google Scholar 

  • Nykjaer A, Dragun D, Walther D, Vorum H, Jacobsen C, Herz J, Melsen F, Christensen EI, Willnow TE (1999) An endocytic pathway essential for renal uptake and activation of the steroid 25-(OH) vitamin D3. Cell 96:507–515

    Article  CAS  Google Scholar 

  • Nykjaer A, Fyfe JC, Kozyraki R, Leheste JR, Jacobsen C, Nielsen MS, Verroust PJ, Aminoff M, de la Chapelle A, Moestrup SK et al (2001) Cubilin dysfunction causes abnormal metabolism of the steroid hormone 25(OH) vitamin D(3). Proc Natl Acad Sci U S A 98:13895–13900

    Article  CAS  Google Scholar 

  • Pal R, Hameed S, Sharma S, Fatima Z (2016) Influence of iron deprivation on virulence traits of mycobacteria. Braz J Infect Dis 20:585–591

    Article  Google Scholar 

  • Papp AC, Azad AK, Pietrzak M, Williams A, Handelman SK, Igo RP Jr, Stein CM, Hartmann K, Schlesinger LS, Sadee W (2018) AmpliSeq transcriptome analysis of human alveolar and monocyte-derived macrophages over time in response to Mycobacterium tuberculosis infection. PLoS ONE 13:e0198221

    Article  Google Scholar 

  • Png E, Alisjahbana B, Sahiratmadja E, Marzuki S, Nelwan R, Balabanova Y, Nikolayevskyy V, Drobniewski F, Nejentsev S, Adnan I et al (2012) A genome wide association study of pulmonary tuberculosis susceptibility in Indonesians. BMC Med Genet 13:5

    Article  CAS  Google Scholar 

  • Rowling MJ, Kemmis CM, Taffany DA, Welsh J (2006) Megalin-mediated endocytosis of vitamin D binding protein correlates with 25-hydroxycholecalciferol actions in human mammary cells. J Nutr 136:2754–2759

    Article  CAS  Google Scholar 

  • Szpirer J, Szpirer C, Riviere M, Levan G, Marynen P, Cassiman JJ, Wiese R, DeLuca HF (1991) The Sp1 transcription factor gene (SP1) and the 1,25-dihydroxyvitamin D3 receptor gene (VDR) are colocalized on human chromosome arm 12q and rat chromosome 7. Genomics 11:168–173

    Article  CAS  Google Scholar 

  • Trimble WS, Grinstein S (2007) TB or not TB: Calcium regulation in mycobacterial survival. Cell 130:12–14

    Article  CAS  Google Scholar 

  • Vynnycky E, Fine PE (2000) Lifetime risks, incubation period, and serial interval of tuberculosis. Am J Epidemiol 152:247–263

    Article  CAS  Google Scholar 

  • Yang CS (2017) Advancing host-directed therapy for tuberculosis: new therapeutic insights from the Toxoplasma gondii. Microb Cell 4:105–107

    Article  CAS  Google Scholar 

  • Zhang Y, Zhu H, Yang X, Guo S, Liang Q, Lu Y, Chen X (2018) Serum vitamin D level and vitamin D receptor genotypes may be associated with tuberculosis clinical characteristics: a case-control study. Medicine (Baltimore) 97:e11732

    Article  CAS  Google Scholar 

Download references

Acknowledgements

None.

Funding

This research was supported by the Academic Research Fund of Hoseo University in 2017 (20170054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangjung Park.

Ethics declarations

Conflict of interest

SSK, SIL, HSJ, SP declare that they have no conflict of interest.

Ethical approval

This study was approved by the institutional review board of the Korean National Institute of Health (KNIH) and Hoseo University (1041231–170418-h-056–02). Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, SS., Lee, S.I., Jin, HS. et al. Tuberculosis risk is associated with genetic polymorphisms in the LRP2, CUBN, and VDR genes. Genes Genom 42, 1189–1196 (2020). https://doi.org/10.1007/s13258-020-00971-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-020-00971-3

Keywords