Skip to main content
Log in

Functional genomics by integrated analysis of transcriptome of sweet potato (Ipomoea batatas (L.) Lam.) during root formation

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Background

Sweet potato is easily propagated by cuttings. But the molecular biological mechanism of adventitious root formation are not yet clear.

Objective

To understand the molecular mechanisms of adventitious root formation from stem cuttings in sweet potato.

Methods

RNA-seq analysis was performed using un-rooted stem (0 day) and rooted stem (3 days). Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, comparison with Arabidopsis transcription factors (TFs) of DEGs were conducted to investigate the characteristics of genes and TFs involved in root formation. In addition, qRT-PCR analysis using roots at 0, 3, 6, 9, and 12 days after planting was performed to confirm RNA-seq reliability and related genes expression.

Results

42,459 representative transcripts and 2092 DEGs were obtained through the RNA-seq analysis. The DEGs indicated the GO terms related to the single-organism metabolic process and cell periphery, and involved in the biosynthesis of secondary metabolites, and phenylpropanoid biosynthesis in KEGG pathways. The comparison with Arabidopsis thaliana TF database showed that 3 TFs (WRKY, NAC, bHLH) involved in root formation of sweet potato. qRT-PCR analysis, which was conducted to confirm the reliability of RNA-seq analysis, indicated that some metabolisms including oxidative stress and wounding, transport, hormone may be involved in adventitious root formation.

Conclusions

The detected genes related to secondary metabolism, some hormone (auxin, gibberellin), transports, etc. and 3 TFs (WRKY, NAC, bHLH) may have functions in adventitious roots formation. This results provide valuable resources for future research on the adventitious root formation of sweet potato.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aarts MG, Hodge R, Kalantidis K, Florack D, Wilson ZA, Mulligan BJ, Pereira A (1997) The Arabidopsis MALE STERILITY 2 protein shares similarity with reductases in elongation/condensation complexes. Plant J 12(3):615–623

    CAS  PubMed  Google Scholar 

  • Aharoni A, Galili G (2011) Metabolic engineering of the plant primary-secondary metabolism interface. Curr Opin Biotechnol 22:239–244

    CAS  PubMed  Google Scholar 

  • Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11(10):R106

    CAS  PubMed  PubMed Central  Google Scholar 

  • Andersen JR, Lübberstedt T (2003) Functional markers in plants. Trends Plant Sci 8:554–560

    CAS  PubMed  Google Scholar 

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM et al (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett MD, Leitch IJ (2005) Plant DNA C-values database. Royal Botanic Gardens. http://data.kew.org/cvalues. Accessed 12 Dec 2014

  • Benschop JJ, Mohammed S, O’Flaherty M, Heck AJ, Slijper M, Menke FL (2007) Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis. Mol Cell Proteomics 6:1198–1214

    CAS  PubMed  Google Scholar 

  • Bewley JD (1997) Seed germination and dormancy. Plant Cell 9:1055–1066

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhalerao RP, Eklöf J, Ljung K, Marchant A, Bennett M, Sandberg G (2002) Shoot-derived auxin is essential for early lateral root emergence in Arabidopsis seedlings. Plant J 29:325–332

    CAS  PubMed  Google Scholar 

  • Bindschedler LV, Palmblad M, Cramer R (2008) Hydroponic isotope labelling of entire plants (HILEP) for quantitative plant proteomics; an oxidative stress case study. Phytochem 69:1962–1972

    CAS  Google Scholar 

  • Borderies G, Jamet E, Lafitte C, Rossignol M, Jauneau A, Boudart G et al (2003) Proteomics of loosely bound cell wall proteins of Arabidopsis thaliana cell suspension cultures: a critical analysis. Electrophoresis 24:3421–3432

    CAS  PubMed  Google Scholar 

  • Bouquin T, Meier C, Foster R, Nielsen ME, Mundy J (2001) Control of specific gene expression by gibberellin and brassinosteroid. Plant Physiol 127:450–458

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen G, Yin K, Wang C, Shi T (2011) De novo transcriptome assembly of RNA-Seq reads with different strategies. Sci China Life Sci 54:1129–1133

    CAS  PubMed  Google Scholar 

  • Chitsaz H, Yee-Greenbaum JL, Tesler G, Lombardo MJ, Dupont CL, Badger JH et al (2011) Efficient de novo assembly of single-cell bacterial genomes from shortread data sets. Nat Biotechnol 29:915–921

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chu Y, Corey DR (2012) RNA sequencing: platform selection, experimental design, and data interpretation. Nucleic acid therapeutics 22:271–274

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cox MP, Peterson DA, Biggs PJ (2010) SolexaQA: At-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinform 11:485

    Google Scholar 

  • Daniels MJ, Chaumont F, Mirkov TE, Chrispeels MJ (1996) Characterization of a new vacuolar membrane aquaporin sensitive to mercury at a unique site. Plant Cell 8:587–599

    CAS  PubMed  PubMed Central  Google Scholar 

  • Devaiah BN, Karthikeyan AS, Raghothama KG (2007) WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis. Plant Physiol 143:1789–1801

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dill A, Sun TP (2001) Synergistic derepression of gibberellin signaling by removing RGA and GAI function in Arabidopsis thaliana. Genetics 159(2):777–785

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dong T, Zhu M, Yu J, Han R, Tang C, Xu T, Liu J, Li Z (2019) RNA-Seq and iTRAQ reveal multiple pathways involved in storage root formation and development in sweet potato (Ipomoea batatas L.). BMC Plant Biol 19:136

    PubMed  PubMed Central  Google Scholar 

  • Donner TJ, Scarpella E (2013) Transcriptional control of early vein expression of CYCA2; 1 and CYCA2; 4 in Arabidopsis leaves. Mech Dev 130:14–24

    CAS  PubMed  Google Scholar 

  • Ezaki B, Katsuhara M, Kawamura M, Matsumoto H (2001) Different mechanisms of four aluminum (Al)-resistant transgenes for Al toxicity in Arabidopsis. Plant Physiol 127(3):918–927

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ezaki B, Sasaki K, Matsumoto H, Nakashima S (2005) Functions of two genes in aluminium (Al) stress resistance: repression of oxidative damage by the AtBCB gene and promotion of efflux of Al ions by the NtGDI1gene. J Exp Bot 56(420):2661–2671

    CAS  PubMed  Google Scholar 

  • Firon N, LaBonte D, Villordon A, Kfir Y et al (2013) Transcriptional profiling of sweetpotato (Ipomoea batatas) roots indicates downregulation of lignin biosynthesis and up-regulation of starch biosynthesis at an early stage of storage root formation. BMC Genom 14:460

    CAS  Google Scholar 

  • Fu X, Harberd NP (2003) Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature 421:740–743

    CAS  PubMed  Google Scholar 

  • Garg R, Patel RK, Tyagi AK, Jain M (2011) De novo assembly of chickpea transcriptome using short reads for gene discovery and marker identification. DNA Res 18:53–63

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gaspar T, Penel C, Castillo F, Greppin H (1985) A two-step control of basic and acidic peroxidases and its significance for growth and development. Plant Physiol 64:418–423

    CAS  Google Scholar 

  • Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100

    CAS  PubMed  Google Scholar 

  • Gonzali S, Loreti E, Solfanelli C, Novi G, Alpi A, Perata P (2006) Identification of sugar-modulated genes and evidence for in vivo sugar sensing in Arabidopsis. Journal of plant research 119(2):115–123

    CAS  PubMed  Google Scholar 

  • Gou J, Strauss SH, Tsai CJ, Fang K, Chen Y, Jiang X et al (2010) Gibberellins regulate lateral root formation in populus through interactions with auxin and other hormones. Plant Cell 22:623–639

    CAS  PubMed  Google Scholar 

  • Grunewald W, De Smet I, Lewis DR, Löfke C, Jansen L, Goeminne G, Vanden Bossche R, Karimi M, De Rybel B, Vanholme B et al (2012) Transcription factor WRKY23 assists auxin distribution patterns during Arabidopsis root development through local control on flavonol biosynthesis. Proc Natl Acad Sci USA 109:1554–1559

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hashimoto K, Igarashi H, Mano S, Takenaka C, Shiina T, Yamaguchi M et al (2008) An isoform of Arabidopsis myosin XI interacts with small GTPases in its C-terminal tail region. J Exp Bot 59:3523–3531

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hatfield R, Vermerris W (2001) Lignin formation in plants. The dilemma of linkage specificity. Plant Physiol 126:1351–1357

    CAS  PubMed  PubMed Central  Google Scholar 

  • Helariutta Y, Fukaki H, Wysocka-Diller J, Nakajima K, Jung J, Sena G, Hauser MT, Benfey PN (2000) The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell 101(5):555–567

    CAS  PubMed  Google Scholar 

  • Hijmans RJ, Huaccho L, Zhang DP (2001) Global distribution of sweetpotato. CIP Program Report 1999–2000

  • Hochholdinger F, Yu P, Marcon C (2018) Genetic Control of Root System Development in Maize. Trends Plant Sci 23(1):79–88

    CAS  PubMed  Google Scholar 

  • Ikeda A, Sonoda Y, Vernieri P, Perata P, Hirochika H, Yamaguchi J (2002) The slender rice mutant, with constitutively activated gibberellin signal transduction, has enhanced capacity for abscisic acid level. Plant cell physiol 43(9):974–979

    CAS  PubMed  Google Scholar 

  • Jakoby M, Weisshaar B, Droge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci 7:106–111

    CAS  PubMed  Google Scholar 

  • Jung JK, McCouch S (2013) Getting to the roots of it: genetic and hormonal control of root architecture. Front plant Sci 4:186

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kehoe DM, Villand P, Somerville S (1999) DNA microarrays for studies of higher plants and other photosynthetic organisms. Trends Plant Sci 4:38–41

    CAS  PubMed  Google Scholar 

  • Kim SH (2001) Studies on the regulation of root development in sweet potato (Ipomoea batatas L.). Dissertation, University of Tsukuba

  • Kim SH, Hamada T (2005) Rapid and reliable method of extracting DNA and RNA from sweetpotato, Ipomoea batatas (L.). Lam. Biotech Lett 27:1841–1845

    CAS  Google Scholar 

  • Kim SH, Hamada T, Otani M, Koga H, Shimada T (2005) Use of single-leaf cutting in the study of the expression of starch synthesis and modification genes in sweetpotato. J Plant Biotechnol 7:123–127

    Google Scholar 

  • Kim YS, Kim SG, Park JE, Park HY, Lim MH, Chua NH, Park CM (2006) A membrane-bound NAC transcription factor regulates cell division in Arabidopsis. Plant Cell 18(11):3132–3144

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HA, Lim CJ, Kim S, Choe JK, Jo SH, Baek N et al (2014) High-throughput sequencing and de novo assembly of Brassica oleracea var. Capitata L. for transcriptome analysis. PLoS One 9:e92087

    PubMed  PubMed Central  Google Scholar 

  • Koornneef M, Bentsink L, Hilhorst H (2002) Seed dormancy and germination. Curr Opin Plant Biol 5:33–36

    CAS  PubMed  Google Scholar 

  • Lin X, Kaul S, Rounsley S, Shea TP, Benito MI, Town CD, Fujii CY et al (1999) Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature 402(6763):761–768

    CAS  PubMed  Google Scholar 

  • Loqué D, Ludewig U, Yuan L, von Wirén N (2005) Tonoplast intrinsic proteins AtTIP2; 1 and AtTIP2; 3 facilitate NH3 transport into the vacuole. Plant Physiol 137:671–680

    PubMed  PubMed Central  Google Scholar 

  • Lorence A, Chevone BI, Mendes P, Nessler CL (2004) Myo-Inositol oxygenase offers a possible entry point into plant ascorbate biosynthesis. Plant Physiol 134:1200–1205

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lucas M, Swarup R, Paponov IA, Swarup K, Casimiro I, Lake D, Peret B, Zappala S et al (2011) Short-Root regulates primary, lateral, and adventitious root development in Arabidopsis. Plant physiol 155(1):384–398

    CAS  PubMed  Google Scholar 

  • Morin RD, Bainbridge M, Fejes A, Hirst M, Krzywinski M, Pugh TJ et al (2008) Profiling the HeLa S3 transcriptome using randomly primed cDNA and massively parallel short-read sequencing. Biotechniques 45:81–94

    CAS  PubMed  Google Scholar 

  • Morozova O, Marra MA (2008) From cytogenetics to next-generation sequencing technologies: advances in the detection of genome rearrangements in tumors. Biochem Cell Biol 86:81–91

    CAS  PubMed  Google Scholar 

  • Mravec J, Skůpa P, Bailly A, Hoyerová K, Křeček P, Bielach A et al (2009) Subcellular homeostasis of phytohormone auxin is mediated by the ER-localized PIN5 transporter. Nature 459:1136–1140

    CAS  PubMed  Google Scholar 

  • Novaes E, Drost DR, Farmerie WG, Pappas GJ, Grattapaglia D, Sederoff RR et al (2008) High-throughput gene and SNP discovery in Eucalyptus grandis, an uncharacterized genome. BMC Genom 9:14

    Google Scholar 

  • Pagnussat GC, Yu HJ, Ngo QA, Rajani S, Mayalagu S, Johnson C et al (2005) Genetic and molecular identification of genes required for female gametophyte development and function in Arabidopsis. Development 132:603–614

    CAS  PubMed  Google Scholar 

  • Pandey SP, Somssich IE (2009) The role of WRKY transcription factors in plant immunity. Plant Physiol 150:1648–1655

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paquette AJ, Benfey PN (2005) Maturation of the ground tissue of the root is regulated by gibberellin and SCARECROW and requires SHORT-ROOT. Plant Physiol 138(2):636–640

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parchman TL, Geist KS, Grahnen JA, Benkman CW, Buerkle CA (2010) Transcriptome sequencing in an ecologically important tree species: assembly, annotation, and marker discovery. BMC Genom 11:180

    Google Scholar 

  • Peng Z, Cheng Y, Tan BCM, Kang L, Tian Z, Zhu Y et al (2012) Comprehensive analysis of RNA-Seq data reveals extensive RNA editing in a human transcriptome. Nat Biotechnol 30:253–260

    CAS  PubMed  Google Scholar 

  • Perez-Perez JM (2007) Hormone signalling and root development: an update on the latest Arabidopsis thaliana research. Functional plant biology 34(3):163–171

    CAS  PubMed  Google Scholar 

  • Ponniah SK, Thimmapuram J, Bhide K, Kalavacharla V, Manoharan M (2017) Comparative analysis of the root transcriptomes of cultivated sweetpotato (Ipomoea batatas [L.] Lam) and its wild ancestor (Ipomoea trifida [Kunth] G. Don). BMC Plant Biol 17:9

    PubMed  PubMed Central  Google Scholar 

  • Salanoubat M, Lemcke K, Rieger M, Ansorge W, Unseld M, Fartmann B et al (2000) Sequence and analysis of chromosome 3 of the plant Arabidopsis thaliana. Nature 408(6814):820–822

    CAS  PubMed  Google Scholar 

  • Schulz MH, Zerbino DR, Vingron M, Birney E (2012) Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics 28:1086–1092

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sergeeva LI, Keurentjes JJ, Bentsink L, Vonk J, van der Plas LH, Koornneef M et al (2006) Vacuolar invertase regulates elongation of Arabidopsis thaliana roots as revealed by QTL and mutant analysis. Proc Natl Acad Sci USA 103:2994–2999

    CAS  PubMed  PubMed Central  Google Scholar 

  • Siddique S, Endres S, Atkins JM, Szakasits D, Wieczorek K, Hofmann J et al (2009) Myo-inositol oxygenase genes are involved in the development of syncytia induced by Heterodera schachtii in Arabidopsis roots. New Phytol 184:457–472

    CAS  PubMed  Google Scholar 

  • Stelpflug SC, Sekhon RS, Vaillancourt B, Hirsch CN, Buell CR, de Leon N, Kaeppler SM (2015) An expanded maize gene expression atlas based on RNA sequencing and its use to explore root development. Plant Genome. https://doi.org/10.3835/plantgenome2015.04.0025

    Article  Google Scholar 

  • Syros T, Yupsanis T, Zafiriadis H, Economou A (2004) Activity and isoforms of peroxidases, lignin and anatomy, during adventitious rooting in cuttings of Ebenus cretica L. J Plant Physiol 161:69–77

    CAS  PubMed  Google Scholar 

  • Tabata S, Kaneko T, Nakamura Y, Kotani H, Kato T, Asamizu E et al (2000) Sequence and analysis of chromosome 5 of the plant Arabidopsis thaliana. Nature 408:823–826

    CAS  PubMed  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Google Scholar 

  • Togari Y (1950) A study of tuberous root formation in sweet potato. Bull Natl Agric Exp Statn Tokyo 68:1–96

    Google Scholar 

  • Trick M, Long Y, Meng J, Bancroft I (2009) Single nucleotide polymorphism (SNP) discovery in the polyploid Brassica napus using Solexa transcriptome sequencing. Plant Biotechnol J 7:334–346

    CAS  PubMed  Google Scholar 

  • Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270:484–487

    CAS  PubMed  Google Scholar 

  • Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG et al (2001) The sequence of the human genome. Science 291:1304–1351

    CAS  PubMed  Google Scholar 

  • Villordon AQ, Ginzberg I, Firon N (2014) Root architecture and root and tuber crop productivity. Trends plant sci 19:419–425

    CAS  PubMed  Google Scholar 

  • Wang JW, Wang LJ, Mao YB, Cai WJ, Xue HW, Chen XY (2005) Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis. Plant Cell 17(8):2204–2216

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Fang B, Chen J, Zhang X, Luo Z, Huang L, Chen X, Li Y (2010) De novo assembly and characterization of root transcriptome using Illumina paired-end sequencing and development of cSSR markers in sweet potato (Ipomoea batatas). BMC Genom 11:726

    CAS  Google Scholar 

  • Wilson LA, Lowe SB (1973) The anatomy of the root system in West Indian sweet potato (Ipomoea batatas (L.) Lam.) cultivars. Ann Botany 37:633–643

    Google Scholar 

  • Woolfe JA (1992) Sweetpotato: an untapped food resource. Cambridge University Press, Cambridge

    Google Scholar 

  • Wu S, Lau KH, Cao Q, Hamilton JP, Sun H, Zhou C et al (2018) Genome sequences of two diploid wild relatives of cultivated sweetpotato reveal targets for genetic improvement. Nat Commun 9(1):4580

    PubMed  PubMed Central  Google Scholar 

  • Xiang L, Van den Ende W (2013) Trafficking of plant vacuolar invertases: from a membrane-anchored to a soluble status. Understanding sorting information in their complex N-terminal motifs. Plant Cell Physiol 54:1263–1277

    CAS  PubMed  Google Scholar 

  • Xiao SJ, Zhang C, Zou Q, Ji ZL (2010) TiSGeD: a database for tissue-specific genes. Bioinformatics 26:1273–1275

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Q, Frugis G, Colgan D, Chua NH (2000) Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev 14:3024–3036

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaoka S, Shimono Y, Shirakawa M, Fukao Y, Kawase T, Hatsugai N et al (2013) Identification and dynamics of Arabidopsis adaptor protein-2 complex and its involvement in floral organ development. Plant Cell 25:2958–2969

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Moeinzadeh MH, Kuhl H, Helmuth J, Xiao P, Haas S et al (2017) Haplotype-resolved sweet potato genome traces back its hexaploidization history. Nat Plants 3:696–703

    CAS  PubMed  Google Scholar 

  • Yu J, Hu S, Wang J, Wong GKS, Li S, Liu B et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92

    CAS  PubMed  Google Scholar 

  • Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Peng Y, Guo Z (2008) Constitutive expression of pathogeninducible OsWRKY31 enhances disease resistance and affects root growth and auxin response in transgenic rice plants. Cell Res 18:508–521

    CAS  PubMed  Google Scholar 

  • Zhong R, Demura T, Ye ZH (2006) SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis. Plant Cell 18:3158–3170

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang K, Wu Z, Tang D, Luo K, Lu H, Liu Y, Dong J, Wang X, Lv C, Wang J (2017) Comparative transcriptome analysis reveals critical function of sucrose metabolism related-enzymes in starch accumulation in the storage root of sweet potato. Front Plant Sci 8:914

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the 2016 Research Fund of University of Seoul.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunhyung Kim.

Ethics declarations

Conflict of interest

We declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Nie, H., Jun, B. et al. Functional genomics by integrated analysis of transcriptome of sweet potato (Ipomoea batatas (L.) Lam.) during root formation. Genes Genom 42, 581–596 (2020). https://doi.org/10.1007/s13258-020-00927-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-020-00927-7

Keywords

Navigation