Skip to main content

Advertisement

Log in

Application of NanoString technologies in angioimmunoblastic T cell lymphoma

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Background

Angioimmunoblastic T-cell lymphoma (AITL) is an aggressive disease. Most cancer diagnoses are determined by anatomical histology. Therefore, many samples are stored in FFPE blocks for H&E staining. However, RNAs extracted from the FFPE block have a high level of fragmentation, making it difficult to perform accurate DEG analysis using RNA sequencing.

Objective

To overcome fragmented RNA's drawback in NGS application, we applied the NanoString nCounter® technique of hybridization method that can be used for DEG analysis without PCR amplification.

Methods

We characterized the gene expression profiling of AITLs though transcriptome analysis based on the nCounter® PanCancer IO 360™ Panel and NanoString platform. To perform the analysis of differential expression gene (DEG) profiles in AITLs, we compared the NanoString data from eight AITL patients with a healthy control donor.

Results

Ninety-one genes were up-regulated and six genes were down-regulated in AITLs compared to control. The Gene Ontology (GO) analysis of 97-DEGs revealed that they were closely related to cytokine, MAPK cascade, leukocyte differentiation, and immune response, suggesting that this affect the immune system. In addition, KEGG analysis revealed that AITL DEGs were found to be highly involved in cytokine–cytokine receptor interaction and PI3K-Akt signaling pathway.

Conclusion

We believe that comprehensive multiplex studies, along with NanoString analysis, may be helpful to understand the molecular mechanisms of AITL, including mutations, gene expression, and protein expression studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Boddicker RL, Razidlo GL, Feldman AL (2019) Genetic alterations affecting GTPases and T-cell receptor signaling in peripheral T-cell lymphomas. Small GTPases 10:33–39

    Article  CAS  Google Scholar 

  • Broccoli A, Zinzani PL (2017) Angioimmunoblastic T-cell lymphoma. Hematol Oncol Clin North Am 31:223–238

    Article  Google Scholar 

  • Bustelo XR, Sauzeau V, Berenjeno IM (2007) GTP-binding proteins of the Rho/Rac family: regulation, effectors and functions in vivo. BioEssays 29:356–370

    Article  CAS  Google Scholar 

  • Chiba S, Enami T, Ogawa S, Sakata-Yanagimoto M (2015) G17V RHOA: genetic evidence of GTP-unbound RHOA playing a role in tumorigenesis in T cells. Small GTPases 6:100–103

    Article  CAS  Google Scholar 

  • Chihara D, Fanale MA, Miranda RN, Noorani M, Westin JR, Nastoupil LJ, Hagemeister FB, Fayad LE, Romaguera JE, Samaniego F et al (2017) The survival outcome of patients with relapsed/refractory peripheral T-cell lymphoma-not otherwise specified and angioimmunoblastic T-cell lymphoma. Br J Haematol 176:750–758

    Article  CAS  Google Scholar 

  • Cortes JR, Ambesi-Impiombato A, Couronne L, Quinn SA, Kim CS, da Silva Almeida AC, West Z, Belver L, Martin MS, Scourzic L et al (2018) RHOA G17V induces T follicular helper cell specification and promotes lymphomagenesis. Cancer Cell 33(259–273):e257

    Google Scholar 

  • de Leval L, Rickman DS, Thielen C, Reynies A, Huang YL, Delsol G, Lamant L, Leroy K, Briere J, Molina T et al (2007) The gene expression profile of nodal peripheral T-cell lymphoma demonstrates a molecular link between angioimmunoblastic T-cell lymphoma (AITL) and follicular helper T (TFH) cells. Blood 109:4952–4963

    Article  Google Scholar 

  • Dobay MP, Lemonnier F, Missiaglia E, Bastard C, Vallois D, Jais JP, Scourzic L, Dupuy A, Fataccioli V, Pujals A et al (2017) Integrative clinicopathological and molecular analyses of angioimmunoblastic T-cell lymphoma and other nodal lymphomas of follicular helper T-cell origin. Haematologica 102:e148–e151

    Article  Google Scholar 

  • Eastel JM, Lam KW, Lee NL, Lok WY, Tsang AHF, Pei XM, Chan AKC, Cho WCS, Wong SCC (2019) Application of NanoString technologies in companion diagnostic development. Expert Rev Mol Diagn 19:591–598

    Article  CAS  Google Scholar 

  • Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420:629–635

    Article  CAS  Google Scholar 

  • Evangelista AF, Zanon MF, Carloni AC, de Paula FE, Morini MA, Ferreira-Neto M, Soares IC, Miziara JE, de Marchi P, Scapulatempo-Neto C et al (2017) Detection of ALK fusion transcripts in FFPE lung cancer samples by NanoString technology. BMC Pulm Med 17:86

    Article  Google Scholar 

  • Fujisawa M, Chiba S, Sakata-Yanagimoto M (2017) Recent progress in the understanding of angioimmunoblastic T-cell lymphoma. J Clin Exp Hematop 57:109–119

    Article  Google Scholar 

  • Geiss GK, Bumgarner RE, Birditt B, Dahl T, Dowidar N, Dunaway DL, Fell HP, Ferree S, George RD, Grogan T et al (2008) Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat Biotechnol 26:317–325

    Article  CAS  Google Scholar 

  • Han P, Yang L, Yan W, Tian D (2019) Angioimmunoblastic T-cell lymphoma mimicking drug fever and infectious etiology after a thyroidectomy: a case report. Medicine (Baltimore) 98:e16932

    Article  Google Scholar 

  • Iqbal J, Weisenburger DD, Greiner TC, Vose JM, McKeithan T, Kucuk C, Geng H, Deffenbacher K, Smith L, Dybkaer K et al (2010) Molecular signatures to improve diagnosis in peripheral T-cell lymphoma and prognostication in angioimmunoblastic T-cell lymphoma. Blood 115:1026–1036

    Article  CAS  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  CAS  Google Scholar 

  • Lemonnier F, Couronne L, Parrens M, Jais JP, Travert M, Lamant L, Tournillac O, Rousset T, Fabiani B, Cairns RA et al (2012) Recurrent TET2 mutations in peripheral T-cell lymphomas correlate with TFH-like features and adverse clinical parameters. Blood 120:1466–1469

    Article  CAS  Google Scholar 

  • Li X, Liu Z, Mi M, Zhang C, Xiao Y, Liu X, Wu G, Zhang L (2019) Identification of hub genes and key pathways associated with angioimmunoblastic T-cell lymphoma using weighted gene co-expression network analysis. Cancer Manag Res 11:5209–5220

    Article  CAS  Google Scholar 

  • Manso R, Roncador G, Montes-Moreno S, Rojo F, Perez-Saenz MA, Mollejo M, Menarguez J, Carvajal N, Garcia-Cosio M, Llamas P et al (2017) p-MAPK1 expression associated with poor prognosis in angioimmunoblastic T-cell lymphoma patients. Br J Haematol 176:661–664

    Article  CAS  Google Scholar 

  • Nakamoto-Matsubara R, Sakata-Yanagimoto M, Enami T, Yoshida K, Yanagimoto S, Shiozawa Y, Nanmoku T, Satomi K, Muto H, Obara N et al (2014) Detection of the G17V RHOA mutation in angioimmunoblastic T-cell lymphoma and related lymphomas using quantitative allele-specific PCR. PLoS One 9:e109714

    Article  Google Scholar 

  • Ocampo-Garza J, Herz-Ruelas ME, Gonzalez-Lopez EE, Mendoza-Oviedo EE, Garza-Chapa JI, Ocampo-Garza SS, Vazquez-Herrera NE, Miranda-Maldonado I, Ocampo-Candiani J (2014) Angioimmunoblastic T-cell lymphoma: a diagnostic challenge. Case Rep Dermatol 6:291–295

    Article  Google Scholar 

  • Ohe M, Hashino S (2016) Successful treatment of angioimmunoblastic T-cell lymphoma with clarithromycin. Blood Res 51:139–142

    Article  Google Scholar 

  • Palomero T, Couronne L, Khiabanian H, Kim MY, Ambesi-Impiombato A, Perez-Garcia A, Carpenter Z, Abate F, Allegretta M, Haydu JE et al (2014) Recurrent mutations in epigenetic regulators, RHOA and FYN kinase in peripheral T cell lymphomas. Nat Genet 46:166–170

    Article  CAS  Google Scholar 

  • Rodriguez-Pinilla SM, Atienza L, Murillo C, Perez-Rodriguez A, Montes-Moreno S, Roncador G, Perez-Seoane C, Dominguez P, Camacho FI, Piris MA (2008) Peripheral T-cell lymphoma with follicular T-cell markers. Am J Surg Pathol 32:1787–1799

    Article  Google Scholar 

  • Roufosse F, de Leval L, van Krieken H, van Deuren M (2015) Lymphocytic variant hypereosinophilic syndrome progressing to angioimmunoblastic T-cell lymphoma. Leuk Lymph 56:1891–1894

    Article  Google Scholar 

  • Sakata-Yanagimoto M, Enami T, Yoshida K, Shiraishi Y, Ishii R, Miyake Y, Muto H, Tsuyama N, Sato-Otsubo A, Okuno Y et al (2014) Somatic RHOA mutation in angioimmunoblastic T cell lymphoma. Nat Genet 46:171–175

    Article  CAS  Google Scholar 

  • Schmitz N, de Leval L (2017) How I manage peripheral T-cell lymphoma, not otherwise specified and angioimmunoblastic T-cell lymphoma: current practice and a glimpse into the future. Br J Haematol 176:851–866

    Article  CAS  Google Scholar 

  • Vallois D, Dobay MP, Morin RD, Lemonnier F, Missiaglia E, Juilland M, Iwaszkiewicz J, Fataccioli V, Bisig B, Roberti A et al (2016) Activating mutations in genes related to TCR signaling in angioimmunoblastic and other follicular helper T-cell-derived lymphomas. Blood 128:1490–1502

    Article  CAS  Google Scholar 

  • Veldman-Jones MH, Brant R, Rooney C, Geh C, Emery H, Harbron CG, Wappett M, Sharpe A, Dymond M, Barrett JC et al (2015) Evaluating robustness and sensitivity of the nanostring technologies nCounter platform to enable multiplexed gene expression analysis of clinical samples. Cancer Res 75:2587–2593

    Article  CAS  Google Scholar 

  • Vose J, Armitage J, Weisenburger D, International TCLP (2008) International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes. J Clin Oncol 26:4124–4130

    Article  Google Scholar 

  • Wang M, Zhang S, Chuang SS, Ashton-Key M, Ochoa E, Bolli N, Vassiliou G, Gao Z, Du MQ (2017) Angioimmunoblastic T cell lymphoma: novel molecular insights by mutation profiling. Oncotarget 8:17763–17770

    PubMed  PubMed Central  Google Scholar 

  • Watatani Y, Sato Y, Miyoshi H, Sakamoto K, Nishida K, Gion Y, Nagata Y, Shiraishi Y, Chiba K, Tanaka H et al (2019) Molecular heterogeneity in peripheral T-cell lymphoma, not otherwise specified revealed by comprehensive genetic profiling. Leukemia 33:2867–2883

    Article  CAS  Google Scholar 

  • Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer-Verlag, New York

Download references

Acknowledgements

The authors gratefully acknowledge Center for Bio-Medical Engineering Core Facility at Dankook University for providing critical reagents and equipment. The present work was conducted with funding from the Research Fund of Dankook University in 2018.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seungkyu Choi or Kyudong Han.

Ethics declarations

Conflict of interest

Wonseok Shin, Seyoung Mun, Seungkyu Choi, and Kyudong Han declare that we have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

13258_2020_919_MOESM1_ESM.pptx

Figure S1. Multidimensional scaling (MDS) plot analysis with the NanoString nCounter gene expression data. The MDS plot analysis was performed to verify similarity of gene expression level between control and AITLs. Blue dot and orange triangle indicate control and ALTL, respectively

13258_2020_919_MOESM2_ESM.pptx

Figure S2. Box plots of the NanoString nCounter gene expression in healthy control and AITLs. The box plots show the distribution of gene expression for each sample, based on the NanoString nCounter data. Blue and orange boxes at same line with x-axis indicate control and ALTL samples, respectively. The Y axis represents a normalized count (transformed to log2). The line in the box represent median and the bars across the boxes show the minimum and maximum expression values in each sample

13258_2020_919_MOESM3_ESM.pptx

Figure S3. GO network analysis of 97 DEGs in AITL. GO network analysis of 97-AITL significant DEGs was performed using the MetaScape web-based tool. Each term is represented by a circle node and its color at right side represents its GO cluster identity. The color intensity of each line reflects statistical significance between the GO clusters

13258_2020_919_MOESM4_ESM.pptx

Figure S4. KEGG network analysis of 97 DEGs in AITL. KEGG network analysis of 97-AITL significant DEGs was performed using the MetaScape web-based tool. Each term is represented by a circle node and its color at right side represents its KEGG cluster identity. The color intensity of each line reflects statistical significance between the KEEG clusters

Supplementary material 5 (XLSX 57 kb)

Supplementary material 6 (XLSX 31 kb)

Supplementary material 7 (XLSX 15 kb)

Supplementary material 8 (XLSX 13 kb)

Supplementary material 9 (XLSX 11 kb)

Supplementary material 10 (XLSX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, W., Mun, S., Choi, S. et al. Application of NanoString technologies in angioimmunoblastic T cell lymphoma. Genes Genom 42, 485–494 (2020). https://doi.org/10.1007/s13258-020-00919-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-020-00919-7

Keywords

Navigation