Skip to main content
Log in

Associations of MTRR and TSER polymorphisms related to folate metabolism with susceptibility to metabolic syndrome

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Background

Hyperhomocysteinemia is a potential risk factor for the development of metabolic syndrome (MetS). Among genes involved in homocysteine metabolism, polymorphisms of methylenetetrahydrofolate reductase (MTHFR) gene are known to be associated with MetS incidence. However, effects of polymorphisms of other folate metabolism-related genes on MetS susceptibility are not well known yet.

Objective

This study was to determine whether methionine synthase (MTR) 2756A > G, methionine synthase reductase (MTRR) 66A > G, and thymidylate synthase enhancer region (TSER) 2R/3R polymorphisms might be associated with risks of MetS development in the Korean population.

Methods

Genotype analysis of the three polymorphisms was performed for a total of 483 subjects including 236 MetS patients and 247 unrelated healthy controls using polymerase chain reaction-restriction fragment length polymorphism technique.

Results

The present study revealed that MTRR and TSER polymorphisms were associated with susceptibility to MetS. Several genotypes and allele combinations from the three polymorphisms were also related to the MetS prevalence. When polymorphism data were stratified according to the risk components of MetS, MTR polymorphism was significantly associated with an increased risk of MetS in subjects with systolic blood pressure < 132.7 mmHg (AOR 1.842, 95% CI 1.039–3.266, P = 0.037) and fasting blood glucose level < 106.3 mg/dL (AOR 1.772, 95% CI 1.069–2.937, P = 0.027). MTRR polymorphism was significantly associated with a decreased risk of MetS in subjects with triglyceride level < 216.3 mg/dL (AOR 0.616, 95% CI 0.399–0.951, P = 0.029). To the best of our knowledge, this is the first to provide reliable evidence about the association of other folate metabolism-related gene polymorphisms besides MTHFR with MetS susceptibility and its risk factors.

Conclusion

Results of this study suggest that MTRR and TSER polymorphisms might be potential genetic markers for the risk of MetS development in Korean population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anwar W, Gueant JL, Abdelmouttaleb I, Adjalla C, Gerard P, Lemoel G, Erraess N, Moutabarrek A, Namour F (2001) Hyperhomocysteinemia is related to residual glomerular filtration and folate, but not to methylenetetrahydrofolate-reductase and methionine synthase polymorphisms, in supplemented end-stage renal disease patients undergoing hemodialysis. Clin Chem Lab Med 39:747–752

    Article  CAS  PubMed  Google Scholar 

  • Bjorck J, Hellgren M, Rastam L, Linblad U (2006) Associations between serum insulin and homocysteine in a Swedish population-A potential link between the metabolic syndrome and hyperhomocysteinemia: the Skaraborg project. Metabolism 55:1007–1013

    Article  CAS  PubMed  Google Scholar 

  • Blom HJ, Smulders Y (2011) Overview of homocysteine and folate metabolism. With special references to cardiovascular disease and neural tube defects. J Inherit Metab Dis 34:75–81

    Article  CAS  Google Scholar 

  • Chaabane S, Messedi M, Akrout R, Ben Hamad M, Turki M, Marzouk S, Keskes L, Bahloul Z, Rebai A, Ayedi F et al (2018) Association of hyperhomocysteinemia with genetic variants in key enzymes of homocysteine metabolism and methotrexate toxicity in rheumatoid arthritis patients. Inflamm Res 67:703–710

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Stampfer MJ, Ma J, Selhub J, Malinow MR, Hennekens CH, Hunter DJ (2001) Influence of a methionine synthase (D919G) polymorphism on plasma homocysteine and folate levels and relation to risk of myocardial infarction. Atherosclerosis 154:667–672

    Article  CAS  PubMed  Google Scholar 

  • Chen AR, Zhang HG, Wang ZP, Fu SJ, Yang PQ, Ren JG, Ning YY, Hu XJ, Tian LH (2010) C-reactive protein, vitamin B12 and C677T polymorphism of N-5,10-methylenetetrahydrofolate reductase gene are related to insulin resistance and risk factors for metabolic syndrome in Chinese population. Clin Investig Med 33:E290–E297

    Article  CAS  Google Scholar 

  • Cheng TY, Makar KW, Neuhouser ML, Miller ML, Miller JW, Song X, Brown EC, Beresford SA, Zheng Y, Poole EM, Galbraith RL et al (2015) Folate-mediated one-carbon metabolism genes and interactions with nutritional factors on colorectal cancer risk: Women’s Health Initiative Observational Study. Cancer 121:3684–3691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cornier MA, Dabelea D, Hernandez TL, Lindstrom RC, Steig AJ, Stob NR, van Pelt RE, Wang H, Eckel RH (2008) The metabolic syndrome. Endocr Rev 29:777–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dekou V, Gudnason V, Hawe E, Miller GJ, Stansbie D, Humphries SE (2001) Gene-environment and gene–gene interaction in the determination of plasma homocysteine levels in healthy middle-aged men. Thromb Haemost 85:67–74

    Article  CAS  PubMed  Google Scholar 

  • Du B, Tian H, Tian D, Zhang C, Wang W, Wang L, Ge M, Hou Q, Zhang W (2018) Genetic polymorphisms of key enzymes in folate metabolism affect the efficacy of folate therapy in patients with hyperhomocysteinaemia. Br J Nutr 119:887–895

    Article  CAS  PubMed  Google Scholar 

  • Ellingrod VL, Miller DD, Taylor SF, Moline J, Kerr J (2008) Metabolic syndrome and insulin resistance in schizophrenia patients receiving antipsychotics genotyped for the methylenetetrahydrofolate reductase (MTHFR) 677C/T and 1298A/C variants. Schizophr Res 98:47–54

    Article  PubMed  Google Scholar 

  • Fowler B (2001) The folate cycle and disease in humans. Kidney Int Suppl 78:S221–S229

    Article  CAS  PubMed  Google Scholar 

  • Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, Boers GJ, den Heijer M, Kluijtmans LA, van den Heuvel LP et al (1995) A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 10:111–113

    Article  CAS  PubMed  Google Scholar 

  • Gaughan DJ, Kluijtmans LA, Barbaux S, MaMaster D, Young JW, Evan A, Whitehead AS (2001) The methionine synthase reductase (MTRR) A66G polymorphism is a novel genetic determinant of plasma homocysteine concentrations. Atherosclerosis 157:451–456

    Article  CAS  PubMed  Google Scholar 

  • Geisel J, Zimbelmann I, Schorr H, Knapp JP, Bodis M, Hübner U, Herrmann W (2001) Genetic defects as important factors for moderate hyperhomocysteinemia. Clin Chem Lab Med 39:698–704

    Article  CAS  PubMed  Google Scholar 

  • Goyette P, Sumner JS, Milos R, Duncan AM, Rosenblatt DS, Matthews RG, Rozen R (1994) Human methylenetetrahydrofolate reductase: isolation of cDNA, mapping and mutation identification. Nat Genet 7:195–200

    Article  CAS  PubMed  Google Scholar 

  • Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, Gordon DJ, Krauss RM, Savage PJ, Smith SC Jr (2005) Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 112:2735–2752

    Article  PubMed  Google Scholar 

  • Guven A, Inanc F, Kilinc M, Ekerbicer H (2005) Plasma homocysteine and lipoprotein (a) levels in Turkish patients with metabolic syndrome. Heart Vessels 20:290–295

    Article  PubMed  Google Scholar 

  • Huang L, Song XM, Zhu WL, Li Y (2008) Plasma homocysteine and gene polymorphisms associated with the risk of hyperlipidemia in northern Chinese subjects. Biomed Environ Sci 21:514–520

    Article  CAS  PubMed  Google Scholar 

  • Jemaa R, Achouri A, Kallel A, Ben Ali S, Mourali S, Feki M, Elasmi M, Raieb SH, Sanhaji H, Omar S et al (2008) Association between the 2756A > G variant in the gene encoding methionine synthase and myocardial infarction in Tunisian patients. Clin Chem Lab Med 46:1364–1368

    Article  CAS  PubMed  Google Scholar 

  • Ju J, Pedersen-Lane J, Maley F, Chu E (1999) Regulation of p53 expression by thymidylate synthase. Proc Natl Acad Sci USA 96:3769–3774

    Article  CAS  PubMed  Google Scholar 

  • Kang BS, Ahn DH, Kim NK, Kim JW (2011) Relationship between metabolic syndrome and MTHFR polymorphism in colorectal cancer. J Korean Soc Coloproctol 27:78–82

    Article  PubMed  PubMed Central  Google Scholar 

  • Kheradmand M, Maghbooli Z, Salemi S, Sanjari M (2017) Associations of MTHFR C677T polymorphism with insulin resistance, results of NURSE Study (Nursing Unacquainted Related Stress Etiologies). J Diabetes Metab Disord 16:22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JH, Jeon YJ, Lee BE, Kang H, Shin JE, Choi DH, Lee WS, Kim NK (2013) Association of methionine synthase and thymidylate synthase genetic polymorphisms with idiopathic recurrent pregnancy loss. Fertil Steril 99:1674–1680

    Article  CAS  PubMed  Google Scholar 

  • Klerk M, Lievers KJ, Kluijtmans LA, Blom HJ, den Jeijer M, Schouten EG, Kok FJ, Verhoef P (2003) The 2756A > G variant in the gene encoding methionine synthase: its relation with plasma homocysteine levels and risk of coronary heart disease in a Dutch case-control study. Throm Res 110:87–91

    Article  CAS  Google Scholar 

  • Ko KH, Kim NK, Yim DJ, Hong SP, Park PW, Rim KS, Kim S, Hwang SG (2006) Polymorphisms of 5,10-methylenetetrahydrofolate reductase (MTHFR C677T) and thymidylate synthase enhancer region (TSER) as a risk factor of cholangiocarcinoma in a Korean population. Anticancer Res 26:4229–4233

    CAS  PubMed  Google Scholar 

  • Leclerc D, Campeau E, Goyette P, Adjalla CE, Christensen B, Ross M, Eydoux P, Rosenblatt DS, Rozen R, Gravel RA (1996) Human methionine synthase: cDNA cloning and identification of mutations in patients of the cblG complementation group of folate/cobalamin disorders. Hum Mol Genet 5:1867–1874

    Article  CAS  PubMed  Google Scholar 

  • Leclerc D, Wilson A, Dumas R, Gafuik C, Song D, Watkins D, Heng HH, Rommens JM, Scherer SW, Rosenblatt DS et al (1998) Cloning and mapping of a cDNA for methionine synthase reductase, a flavoprotein defective in patients with homocystinuria. Proc Natl Acad Sci USA 95:3059–3064

    Article  CAS  PubMed  Google Scholar 

  • Li WX, Dai SX, Zheng JJ, Liu JQ, Huang JF (2015) Homocysteine metabolism gene polymorphisms (MTHFR C677T, MTHFR A1298C, MTR A2756G and MTRR A66G) jointly elevate the risk of folate deficiency. Nutrients 7:6670–6687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Schmitz JC, Lin X, Tai N, Yan W, Farrell M, Bailly M, Chen T, Chu E (2002) Thymidylate synthase as a translational regulator of cellular gene expression. Biochim Biophys Acta 1587:174–182

    Article  CAS  PubMed  Google Scholar 

  • Luttmer R, Spijkerman AM, Kok RM, Jakobs C, Blom HJ, Serne EH, Dekker JM, Smulders YM (2013) Metabolic syndrome components are associated with DNA hypomethylation. Obes Res Clin Pract 2:e106–e115

    Article  Google Scholar 

  • Ma J, Stampfer MJ, Christensen B, Giovannucci E, Hunter DJ, Chen J, Willett WC, Selhub J, Hennekens CH, Gravel R, Rozen R (1999) A polymorphism of the methionine synthase gene: association with plasma folate, vitamin B12, homocyst(e)ine, and colorectal cancer risk. Cancer Epidemiol Biomark Prev 8:825–829

    CAS  Google Scholar 

  • Matsuo K, Suzuki R, Hamajima N, Ogura M, Kagami Y, Taji H, Kondoh E, Maeda S, Asakura S, Kaba S (2001) Association between polymorphisms of folate and methionine-metabolizing enzymes and susceptibility to malignant lymphoma. Blood 97:3205–3209

    Article  CAS  PubMed  Google Scholar 

  • Nazki FH, Sameer AS, Ganaie BA (2014) Folate: metabolism, genes, polymorphisms and the associated diseases. Gene 533:11–20

    Article  CAS  PubMed  Google Scholar 

  • Rupasree Y, Naushad SM, Varshaa R, Mahalakshmi GS, Kumaraswami K, Rajasekhar L, Kutala VK (2016) Application of various statistical models to explore gene–gene interactions in folate, xenobiotic, toll-like receptor and STAT4 pathways that modulate susceptibility to systemic lupus erythematosus. Mol Diagn Ther 20:83–95

    Article  CAS  PubMed  Google Scholar 

  • Russo GT, Benedetto A, Alessi E, Ientile R, Antico A, Nicocia G, La Scala R, Di Cesare E, Raimondo G, Cucinotta D (2006) Mild hyperhomocysteinemia and the common C677T polymorphism of methylene tetrahydrofolate reductase gene are not associated with the metabolic syndrome in type 2 diabetes. J Endocrinol Investig 29:201–207

    Article  CAS  Google Scholar 

  • Sharp L, Little J (2004) Polymorphisms in genes involved in folate metabolism and colorectal neoplasia: a HuGE review. Am J Epidemiol 159:423–443

    Article  PubMed  Google Scholar 

  • Silaste ML, Rantala M, Sampi M, Alfthan G, Aro A, Kesäniemi YA (2001) Polymorphisms of key enzymes in homocysteine metabolism affect diet responsiveness of plasma homocysteine in healthy women. J Nutr 131:2643–2647

    Article  CAS  PubMed  Google Scholar 

  • Trinh BN, Ong CN, Coetzee GA, Yu MC, Laird PW (2002) Thymidylate synthase: a novel genetic determinant of plasma homocysteine and folate levels. Hum Genet 111:299–302

    Article  CAS  PubMed  Google Scholar 

  • van Winkel R, Rutten BP, Peerbooms O, Peuskens J, van Os J, De Hert M (2010) MTHFR and risk of metabolic syndrome in patients with schizophrenia. Schizophr Res 121:193–198

    Article  PubMed  Google Scholar 

  • Vasilopoulos Y, Sarafidou T, Bagiatis V, Skriapa L, Goutzelas Y, Pervanidou P, Lazopoulou N, Chrousos GP, Mamuris Z (2011) Association between polymorphisms in MTHFR and APOA5 and metabolic syndrome in the Greek population. Genet Test Mol Biomark 15:613–617

    Article  CAS  Google Scholar 

  • Vaughn JD, Bailey LB, Shelnutt KP, Dunwoody KM, Maneval DR, Davis SR, Quinlivan EP, Gregory JF, Kauwell GP (2004) Methionine synthase reductase 66A → G polymorphism is associated with increased plasma homocysteine concentration when combined with the homozygous methylenetetrahydrofolate reductase 677C → T variant. J Nutr 134:2985–2990

    Article  CAS  PubMed  Google Scholar 

  • Vinukonda G, Shaik Mohammad N, Md Nurul Jain J, Prasad Chintakindi K, Rama Devi Akella R (2009) Genetic and environmental influences on total plasma homocysteine and coronary artery disease (CAD) risk among South Indians. Clin Chim Acta 405:127–131

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Ouyang N, Qu L, Lin T, Zhang X, Yu Y, Jiang C, Xie L, Wang L, Wang Z et al (2017) Effect of MTHFR A1298C and MTRR A66G genetic mutations on homocysteine levels in the Chinese population: a systematic review and meta-analysis. J Trans Int Med 5:220–222

    Article  Google Scholar 

  • Wang J, Xu L, Xia H, Li Y, Tang S (2018) Association of MTHFR C677T gene polymorphism with metabolic syndrome in a Chinese population: a case–control study. J Intern Med Res 46:2658–2669

    Article  CAS  Google Scholar 

  • Weiner AS, Boyarskikh UA, Voronina EN, Mishukova OV, Filipenko ML (2014) Methylenetetrahydrofolate reductase C677T and methionine synthase A2756G polymorphisms influence on leukocyte genomic DNA methylation level. Gene 533:168–172

    Article  CAS  PubMed  Google Scholar 

  • Wilson A, Platt R, Wu Q, Lexlerc D, Christensen B, Yang H, Gravel RA, Rozen R (1999) A common variant in methionine synthase reductase combined with low cobalamin (vitamin B12) increases risk for spina bifida. Mol Genet Metab 67:317–323

    Article  CAS  PubMed  Google Scholar 

  • Yang B, Fan S, Zhi X, Wang D, Li Y, Wang Y, Wang Y, Wei J, Zheng Q, Sun G (2014) Associations of MTHFR C677T and MTRR A66G gene polymorphisms with metabolic syndrome: a case–control study in Northern China. Int J Mol Sci 15:21687–21702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi P, Melnyk K, Pogribna M, Pogribny IP, Hine RJ, James SJ (2000) Increase in plasma homocysteine associated with parallel increases in plasma S-adenosylhomocysteine and lymphocyte DNA hypomethylation. J Biol Chem 38:29318–29323

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a research grant from Jeju National University Hospital in 2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Ho Hong.

Ethics declarations

Conflict of interest

Young Ree Kim and Seung-Ho Hong declare that there is no conflict of interests or financial interests on this article contents.

Bioinformed consent

Written informed consent was approved by the Institutional Review Board of Jeju National University Hospital. The experimental procedures followed the standard regulation of the Review Board.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, Y.R., Hong, SH. Associations of MTRR and TSER polymorphisms related to folate metabolism with susceptibility to metabolic syndrome. Genes Genom 41, 983–991 (2019). https://doi.org/10.1007/s13258-019-00840-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-019-00840-8

Keywords

Navigation