Skip to main content
Log in

Influence of various intensities of 528 Hz sound-wave in production of testosterone in rat’s brain and analysis of behavioral changes

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Testosterone is a nuclear androgen receptor ligand that controls multiple pathways in brain. In addition to the active biosynthesis of steroids in classic steroidogenic organs such as gonads, adrenals and placenta, testosterone also produced in astrocyte cells of brain. Testosterone and its level must be regulated in brain; because, it directly and indirectly affects memory and several key behavioral characteristics. The significance of sound waves on key enzymes that regulate levels of testosterone in brain has not been investigated. The aim of our study was to examine physical stress of such as sound on induction behavioral changes in animal models. According to the current study, sound waves with 528 Hz frequency in 100 dB intensity induce testosterone production in brain by enhancing StAR and SF-1 and reducing P450 aromatase gene expression. Frequency of 528 Hz also reduces total concentration of reactive oxidative species in brain tissue. Prolonged exposure to this sound wave showed reduction of anxiety related behaviors in rats. The results reveal that reduced anxiety is related to increased concentration of testosterone in brain. This study may lead to ascertain a possible therapy in which sounds may be utilized to reduce anxiety in individual.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ahlbom E, Prins GS, Ceccatelli S (2001) Testosterone protects cerebellar granule cells from oxidative stress-induced cell death through a receptor mediated mechanism. Brain Res 892:255–262

    Article  CAS  Google Scholar 

  • Aikey JL, Nyby JG, Anmuth DM, James PJ (2002) Testosterone rapidly reduces anxiety in male house mice (Mus musculus). Horm Behav 42:448–460

    Article  CAS  PubMed  Google Scholar 

  • Alexander LD, Gilman DR, Brown DR, Brown JL, Houghton PE (2010) Exposure to low amounts of ultrasound energy does not improve soft tissue shoulder pathology: a systematic review. Phys Ther 90:14–25

    Article  PubMed  Google Scholar 

  • Aloisi AM, Ceccarelli I, Fiorenzani P, Maddalena M, Rossi A, Tomei V, Sorda G, Danielli B, Rovini M, Cappelli A (2010) Aromatase and 5-alpha reductase gene expression: modulation by pain and morphine treatment in male rats. Mol Pain 6:1

    Article  CAS  Google Scholar 

  • Altman FP (1976) Tetrazolium salts and formazans. Prog Histochem Cytochem 9:1–56

    Article  CAS  PubMed  Google Scholar 

  • Babayi T, Riazi G (2017) The effects of 528 Hz sound wave to reduce cell death in human astrocyte primary cell culture treated with ethanol. J Addict Res Ther 8:2

    Article  CAS  Google Scholar 

  • Biggio G, Purdy RH(2001) Neurosteroids and brain function. vol 46. Academic Press, New York

    Google Scholar 

  • Bimonte-Nelson HA, Singleton RS, Nelson ME, Eckman CB, Barber J, Scott TY, Granholm A-CE (2003) Testosterone, but not nonaromatizable dihydrotestosterone, improves working memory and alters nerve growth factor levels in aged male rats. Exp Neurol 181:301–312

    Article  CAS  PubMed  Google Scholar 

  • Bustin S (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 29:23–39

    Article  CAS  Google Scholar 

  • dos Reis Lestard N, Valente RC, Lopes AG, Capella MA (2013) Direct effects of music in non-auditory cells in culture. Noise Health 15:307

    Article  Google Scholar 

  • Dröge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    Article  PubMed  Google Scholar 

  • Feril LB, Kondo T (2004) Biological effects of low intensity ultrasound: the mechanism involved, and its implications on therapy and on biosafety of ultrasound. J Radiat Res 45:479–489

    Article  PubMed  Google Scholar 

  • Fukui H (2001) Music and testosterone. Ann N Y Acad Sci 930:448–451

    Article  CAS  PubMed  Google Scholar 

  • Good M, Albert JM, Anderson GC, Wotman S, Cong X, Lane D, Ahn S (2010) Supplementing relaxation and music for pain after surgery. Nurs Res 59:259–269

    Article  PubMed  Google Scholar 

  • Goto-Kazeto R, Kight KE, Zohar Y, Place AR, Trant JM (2004) Localization and expression of aromatase mRNA in adult zebrafish. Gen Comp Endocrinol 139:72–84

    Article  CAS  PubMed  Google Scholar 

  • Guo W, Bachman E, Li M, Roy CN, Blusztajn J, Wong S, Chan SY, Serra C, Jasuja R, Travison TG (2013) Testosterone administration inhibits hepcidin transcription and is associated with increased iron incorporation into red blood cells. Aging Cell 12:280–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammer GD, Krylova I, Zhang Y, Darimont BD, Simpson K, Weigel NL, Ingraham HA (1999) Phosphorylation of the nuclear receptor SF-1 modulates cofactor recruitment: integration of hormone signaling in reproduction and stress. Mol Cell 3:521–526

    Article  CAS  PubMed  Google Scholar 

  • Hatzoglou A, Kampa M, Kogia C, Charalampopoulos I, Theodoropoulos PA, Anezinis P, Dambaki C, Papakonstanti EA, Stathopoulos EN, Stournaras C (2005) Membrane androgen receptor activation induces apoptotic regression of human prostate cancer cells in vitro and in vivo. J Clin Endocrinol Metab 90:893–903

    Article  CAS  PubMed  Google Scholar 

  • Heinlein CA, Chang C (2002) The roles of androgen receptors and androgen-binding proteins in nongenomic androgen actions. Mol Endocrinol 16:2181–2187

    Article  CAS  PubMed  Google Scholar 

  • Horowitz LG (2000) Healing codes for the biological apocalypse. Tetrahedron Publishing Group, Sandpoint, pp 251–253

    Google Scholar 

  • Ikeda Y, Shen W-H, Ingraham HA, Parker KL (1994) Developmental expression of mouse steroidogenic factor-1, an essential regulator of the steroid hydroxylases. Mol Endocrinol 8:654–662

    CAS  PubMed  Google Scholar 

  • Ingraham HA, Lala DS, Ikeda Y, Luo X, Shen W-H, Nachtigal MW, Abbud R, Nilson JH, Parker KL (1994) The nuclear receptor steroidogenic factor 1 acts at multiple levels of the reproductive axis. Genes Dev 8:2302–2312

    Article  CAS  PubMed  Google Scholar 

  • Jameson JL(2004) Of mice and men: the tale of steroidogenic factor-1. Oxford University Press, Oxford

    Google Scholar 

  • Kamogashira T, Fujimoto C, Yamasoba T(2015) Reactive oxygen species, apoptosis, and mitochondrial dysfunction in hearing loss. BioMed Res Int 2015:617207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lephart ED (1996) A review of brain aromatase cytochrome P450. Brain Res Rev 22:1–26

    Article  CAS  PubMed  Google Scholar 

  • Levi R, Martinovsky G, Neuman G(2015) System and method for treating pets. United States patent US 9,107,389. 2015

  • Liu Y, Yoshikoshi A, Wang B, Sakanishi A (2003) Influence of ultrasonic stimulation on the growth and proliferation of Oryza sativa Nipponbare callus cells. Colloids Surf B 27:287–293

    Article  CAS  Google Scholar 

  • Luo X, Ikeda Y, Parker KL (1994) A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell 77:481–490

    Article  CAS  PubMed  Google Scholar 

  • Nieschlag E, Behre HM, Nieschlag S(2012) Testosterone: action, deficiency, substitution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Pasti L, Volterra A, Pozzan T, Carmignoto G (1997) Intracellular calcium oscillations in astrocytes: a highly plastic, bidirectional form of communication between neurons and astrocytes in situ. J Neurosci 17:7817–7830

    Article  CAS  PubMed  Google Scholar 

  • Prasad AS, Mantzoros CS, Beck FW, Hess JW, Brewer GJ (1996) Zinc status and serum testosterone levels of healthy adults. Nutrition 12:344–348

    Article  CAS  PubMed  Google Scholar 

  • Sedeek M, Hebert RL, Kennedy CR, Burns KD, Touyz RM (2009) Molecular mechanisms of hypertension: role of Nox family NADPH oxidases. Curr Opin Nephrol Hypertens 18:122–127

    Article  CAS  PubMed  Google Scholar 

  • Slater T, Sawyer B, Sträuli U (1963) Studies on succinate-tetrazolium reductase systems: III. Points of coupling of four different tetrazolium salts III. Points of coupling of four different tetrazolium salts. Biochim Biophys Acta 77:383–393

    Article  CAS  PubMed  Google Scholar 

  • Stocco DM, Clark BJ (1996) Role of the steroidogenic acute regulatory protein (StAR) in steroidogenesis. Biochem Pharmacol 51:197–205

    Article  CAS  PubMed  Google Scholar 

  • Stout CE, Costantin JL, Naus CC, Charles AC (2002) Intercellular calcium signaling in astrocytes via ATP release through connexin hemichannels. J Biol Chem 277:10482–10488

    Article  CAS  PubMed  Google Scholar 

  • Taketo M, Parker KL, Howard TA, Tsukiyama T, Wong M, Niwa O, Morton CC, Miron PM, Seldin MF (1995) Homologs of Drosophila Fushi-Tarazu factor 1 map to mouse chromosome 2 and human chromosome 9q33. Genomics 25:565–567

    Article  CAS  PubMed  Google Scholar 

  • Tan X, Yowler CJ, Super DM, Fratianne RB (2010) The efficacy of music therapy protocols for decreasing pain, anxiety, and muscle tension levels during burn dressing changes: a prospective randomized crossover trial. J Burn Care Res 31:590–597

    Article  PubMed  Google Scholar 

  • Wang B, Zhao H, Wang X, Duan C, Wang D, Sakanishi A (2002) Influence of sound stimulation on plasma membrane H+-ATPase activity. Colloids Surf B 25:183–188

    Article  CAS  Google Scholar 

  • Zhao H, Wu J, Xi B, Wang B (2002) Effects of sound-wave stimulation on the secondary structure of plasma membrane protein of tobacco cells. Colloids Surf B 25:29–32

    Article  CAS  Google Scholar 

  • Zhuang Z, Pei Z, Chen J (2007) Infrasound-induced changes on sexual behavior in male rats and some underlying mechanisms. Environ Toxicol Pharmacol 23:111–114

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank prof. B. Bolouri for technical assistance and data analysis.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

TBD, EF and FHK conceived the experiments, TBD and GHR and SP conducted the experiments and analyzed the results. All authors reviewed the manuscript.

Corresponding author

Correspondence to G. H. Riazi.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest in this report.

Ethical approval

The authors assert that all applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babayi Daylari, T., Riazi, G.H., Pooyan, S. et al. Influence of various intensities of 528 Hz sound-wave in production of testosterone in rat’s brain and analysis of behavioral changes. Genes Genom 41, 201–211 (2019). https://doi.org/10.1007/s13258-018-0753-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-018-0753-6

Keywords

Navigation