Skip to main content

Advertisement

Log in

Characterization and phylogenetic analysis of the complete mitogenome of a rare cavefish, Sinocyclocheilus multipunctatus (Cypriniformes: Cyprinidae)

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

The genus Sinocyclocheilus is a representative group of cave creatures. However, genetic studies on Sinocyclocheilus are rare. The primary objective of this study was to explore the structure and feature of the complete mitochondrial genome of S. multipunctatus, and reconstruct the mitogenomic phylogeny of Sinocyclocheilus. The mitochondrial DNA of S. multipunctatus was amplified by overlapping PCR fragments. The mitogenome was assembled by the SeqMan and annotated using MitoAnnotator. The phylogenetic tree was established using the Bayesian inference and Maximum likelihood methods. The mitogenome of S. multipunctatus is a typical circular molecule of 16,586 bp with base composition A (31.25%), T (25.90%), G (16.35%), and C (26.50%), and consists of 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs) genes, two ribosomal RNAs, and a 931 bp control region. Phylogenetic analysis reveals two clades in the Sinocyclocheilus with robust support. S. multipunctatus is close to a newly discovered cavefish, S. ronganensis. We obtained and described the complete mitogenome of S. multipunctatus, and investigated its phylogenetic status, which may provide a valuable resource for future phylogenetic analyses and population genetic studies in Sinocyclocheilus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, Pütz J, Middendorf M, Stadler PF (2013) MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol 69:313–319

    Article  PubMed  Google Scholar 

  • Boore JL (1999) Animal mitochondrial genomes. Nucleic Acids Res 27:1767–1780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broughton RE, Milam JE, Roe BA (2001) The complete sequence of the zebrafish (Danio rerio) mitochondrial genome and evolutionary patterns in vertebrate mitochondrial DNA. Genome Res 11:1958–1967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown KH (2008) Fish mitochondrial genomics: sequence, inheritance and functional variation. J Fish Biol 72:355–374

    Article  CAS  Google Scholar 

  • Guo X, Liu S, Liu Y (2003) Comparative analysis of the mitochondrial DNA control region in cyprinids with different ploidy level. Aquaculture 224:25–38

    Article  CAS  Google Scholar 

  • Hao Z, Zhang Q, Qu B (2016) Complete mitochondrial genome of a cavefish, Sinocyclocheilus anophthalmus (Cypriniformes: Cyprinidae). Mitochondrial DNA A 27:84–85

    Article  CAS  Google Scholar 

  • He S, Liang XF, Chu WY, Chen DX (2012) Complete mitochondrial genome of the blind cave barbel Sinocyclocheilus furcodorsalis (Cypriniformes: Cyprinidae). Mitochondrial DNA 23:429–431

    Article  CAS  PubMed  Google Scholar 

  • He S, Lu J, Jiang W, Yang S, Yang J, Shi Q (2016) The complete mitochondrial genome sequence of a cavefish Sinocyclocheilus anshuiensis (Cypriniformes: Cyprinidae). Mitochondrial DNA A 27:4256–4258

    Article  CAS  Google Scholar 

  • Imoto JM, Saitoh K. Sasaki T, Yonezawa T, Adachi J, Kartavtsev YP, Miya M, Nishida M, Hanzawa N (2013) Phylogeny and biogeography of highly diverged freshwater fish species (Leuciscinae, Cyprinidae, Teleostei) inferred from mitochondrial genome analysis. Gene 514:112–124

    Article  CAS  PubMed  Google Scholar 

  • Iwasaki W, Fukunaga T, Isagozawa R, Yamada K, Maeda Y, Satoh TP, Sado T, Mabuchi K, Takeshima H, Miya M, Nishida M (2013) MitoFish and MitoAnnotator: a mitochondrial genome database of fish with an accurate and automatic annotation pipeline. Mol Biol Evol 30:2531–2540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Z, Jiang J, Wang Y, Zhang E, Zhang Y, Li L, Xie F, Cai B, Cao L, Zheng G (2016) Red list of China’s vertebrates. Biodivers Sci 24:500–551

    Article  Google Scholar 

  • Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B (2017) PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol Biol Evol 34:772–773

    PubMed  Google Scholar 

  • Li ZQ, Guo BC, Li JB, He SP, Chen YY (2008) Bayesian mixed models and divergence time estimation of Chinese cavefishes (Cyprinidae: Sinocyclocheilus). Chin Sci Bull 53:2342–2352

    CAS  Google Scholar 

  • Lowe TM, Chan PP (2016) tRNAscan-SE on-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res 44:W54-57

    Article  CAS  Google Scholar 

  • Ojala D, Montoya J, Attardi G (1981) tRNA punctuation model of RNA processing in human mitochondria. Nature 290:470–474

    Article  CAS  PubMed  Google Scholar 

  • Peng Z, Wang J, He S (2006) The complete mitochondrial genome of the helmet catfish Cranoglanis bouderius (Siluriformes: Cranoglanididae) and the phylogeny of otophysan fishes. Gene 376:290–297

    Article  CAS  PubMed  Google Scholar 

  • Perna NT, Kocher TD (1995) Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J Mol Evol 41:353–358

    Article  CAS  PubMed  Google Scholar 

  • Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542

    Article  PubMed  PubMed Central  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong C, Tang Y, Zhao K (2017) The complete mitochondrial genome of Gymnocypris przewalskii kelukehuensis (Teleostei: Cyprinidae). Conserv Genet Res 9:443–445

    Article  Google Scholar 

  • Wang J, Li P, Zhang Y, Peng Z (2011) The complete mitochondrial genome of Chinese rare minnow, Gobiocypris rarus (Teleostei: Cypriniformes). Mitochondrial DNA 22:178–180

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Shen Y, Feng C, Zhao K, Song Z, Zhang Y, Yang L, He S (2016) Mitogenomic perspectives on the origin of Tibetan loaches and their adaptation to high altitude. Sci Rep 6:29690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Zeng S, Chen FX, Li ZY (2017) The complete mitochondrial genome sequence of Schizothorax griseus (Cypriniformes: Cyprinidae). Mitochondrial DNA B 2:648–649

    Article  CAS  Google Scholar 

  • Wu Y, Lü K (1983) On the systematic status of some Schizothoracin fishes from Guizhou Province, China. Acta Zootaxon Sin 8:335–336

    Google Scholar 

  • Wu X, Wang L, Chen S, Zan R, Xiao H, Zhang YP (2010) The complete mitochondrial genomes of two species from Sinocyclocheilus (Cypriniformes: Cyprinidae) and a phylogenetic analysis within Cyprininae. Mol Biol Rep 37:2163–2171

    Article  CAS  PubMed  Google Scholar 

  • Xiao WH, Zhang YP (2000) Genetics and evolution of mitochondrial DNA in fish. Acta Hydrobiol Sin 24:384–391

    CAS  Google Scholar 

  • Xiao H, Chen SY, Liu ZM, Zhang RD, Li WX, Zan RG, Zhang YP (2005) Molecular phylogeny of Sinocyclocheilus (Cypriniformes: Cyprinidae) inferred from mitochondrial DNA sequences. Mol Phylogenet Evol 36:67–77

    Article  CAS  PubMed  Google Scholar 

  • Zhang DX, Hewitt GM (1997) Insect mitochondrial control region: a review of its structure, evolution and usefulness in evolutionary studies. Biochem Syst Ecol 25:99–120

    Article  Google Scholar 

  • Zhao YH (2006) Past research and future development on endemic Chinese cavefish of the genus Sinocyclocheilus (Cypriniformes,Cyprinidae). Acta Zootaxon Sin 31:769–777

    Google Scholar 

  • Zhao Y, Zhang C (2009) Endemic fishes of Sinocyclocheilus (Cypriniformes: Cyprinidae) in China-species diversity, cave adaptation, systematics and zoogeography. Science Press, Beijing

    Google Scholar 

  • Zhong L, Wang M, Li D, Tang S, Zhang T, Bian W, Chen X (2018) Complete mitochondrial genome of freshwater goby Rhinogobius cliffordpopei (Perciformes, Gobiidae): genome characterization and phylogenetic analysis. Genes Genom. https://doi.org/10.1007/s13258-018-0669-1

    Article  Google Scholar 

  • Zou YC, Xie BW, Qin CJ, Wang YM, Yuan DY, Li R, Wen ZY (2017) The complete mitochondrial genome of a threatened loach (Sinibotia reevesae) and its phylogeny. Genes Genom 39:767–778

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Doctoral Foundation of Guizhou Normal University ([2016]).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renyi Zhang.

Ethics declarations

Conflict of interest

Renyi Zhang declares that he does not have conflict of interest. Xue Wang declares that she does not have conflict of interest.

Ethical approval

This article does not contain any studies with human subjects by any of the authors. The animal experiment throughout the study was conducted according to the Chinese Ministry of Science and Technology Guiding Directives for Humane Treatment of Laboratory Animals.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1. Putative secondary structures of the 22 tRNA genes identified in the mitochondrial genome of

S. multipunctatus. All tRNA genes are shown in the order of occurrence in the mitochondrial genome starting from tRNA-Phe. The tRNA are labeled with abbreviations of their corresponding amino acid. Dashed lines (-) indicate Watson-Crick base pairings (TIF 3255 KB)

Fig. S2. The OL stem-loop secondary structure in

S. multipunctatus (TIF 72 KB)

Supplementary material 3 (DOCX 13 KB)

Supplementary material 4 (DOCX 16 KB)

Supplementary material 5 (DOCX 13 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Wang, X. Characterization and phylogenetic analysis of the complete mitogenome of a rare cavefish, Sinocyclocheilus multipunctatus (Cypriniformes: Cyprinidae). Genes Genom 40, 1033–1040 (2018). https://doi.org/10.1007/s13258-018-0711-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-018-0711-3

Keywords