Complete mitochondrial genome of freshwater goby Rhinogobius cliffordpopei (Perciformes, Gobiidae): genome characterization and phylogenetic analysis

Research Article
  • 4 Downloads

Abstract

Freshwater gobies Rhinogobius cliffordpopei and R. giurinus are invasive species with particular concern because they have become dominant and were fierce competitors in the invaded areas in Yunnan-Guizhou Plateau (southwest of China). Information about genetic characteristics of R. giurinus have been published, but there were still no relevant reports about R. cliffordpopei. In present study, the complete mitochondrial genome of R. cliffordpopei was determined, which was 16,511 bp in length with A + T content of 51.1%, consisting of 13 protein-coding genes, 22 tRNAs, 2 ribosomal RNAs, and a control region. The gene composition and the structural arrangement of the R. cliffordpopei complete mtDNA were identical to most of other teleosts. Phylogenetic analyses placed R. cliffordpopei in a well-supported monophyletic cluster with other Rhinogobius fish. But the phylogenetic relationship between genus Rhinogobius and Tridentiger remained to be resolved.

Keywords

Rhinogobius cliffordpopei Mitochondrial genome Gobiidae Phylogenetic analysis 

Notes

Acknowledgements

This work was supported by China Agriculture Research System (CARS-46), Human Resources and Social Security of Jiangsu Province (2014-NY-008), Major project of hydrobios resources in Jiangsu province (ZYHB16-3), and the Inland Water Fishery Resources Monitoring Program of Jiangsu Province (2017–2018).

Compliance with ethical standards

Conflict of interest

Liqiang Zhong, Minghua Wang, Daming Li, Shengkai Tang, Tongqing Zhang, Wenji Bian and Xiaohui Chen declare that they have no conflict of interest.

Ethical approval

The research was conducted in the absence of any ethical issue on aquatic animal research.

References

  1. Avise JC, Neigel JE, Arnold J (1984) Demographic influences on mitochondrial DNA lineage survivorship in animal populations. J Mol Evol 20:99–105CrossRefPubMedGoogle Scholar
  2. Boore JL (1999) Animal mitochondrial genomes. Nucleic Acids Res 27:1767–1780CrossRefPubMedPubMedCentralGoogle Scholar
  3. Chen IS, Hsu CH, Hui CF, Shao KT, Miller PJ, Fang LS (1998) Sequence length and variation in the mitochondrial control region of two freshwater gobiid fishes belonging to Rhinogobius (Teleostei: Gobioidei). J Fish Biol 53:179–191Google Scholar
  4. Cheng S, Chang SY, Gravitt P, Respes R (1994) Long PCR. Nature 369:684–685CrossRefPubMedGoogle Scholar
  5. Cheng YZ, Xu TJ, Shi G, Wang RX (2010) Complete mitochondrial genome of the miiuy croaker Miichthys miiuy (Perciformes, Sciaenidae) with phylogenetic consideration. Mar Genom 3:201–209CrossRefGoogle Scholar
  6. Clayton DA (1991) Nuclear gadgets in mitochondrial DNA replication and transcription. Trends in Biochem Sci 16:7–11CrossRefGoogle Scholar
  7. Cui ZX, Liu Y, Li CP, You F, Chu KH (2009) The complete mitochondrial genome of the large yellow croaker, Larimichthys cracea (Perciformes, Sciaenidae): unusual features of its control region and the phylogenetic position of the Sciaenidae. Gene 432:33–43CrossRefPubMedGoogle Scholar
  8. Desjardins P, Morais R (1990) Sequence and gene organization of the chicken mitochondrial genome: a novle gene order in higher vertebrates. J Mol Biol 212:599–634CrossRefPubMedGoogle Scholar
  9. Guo XH, Liu SJ, Liu Q, Liu Y (2004) New progresses on mitochondrial DNA in fish. Acta Genet Sin 31:983–1000PubMedGoogle Scholar
  10. Guo ZQ, Liu JS, Lek S, Li ZJ, Ye SW, Zhu FY, Tang JF, Cucherousset J (2012) Habitat segregation between two congeneric and introduced goby species. Fund Appl Limnol 181:241–251CrossRefGoogle Scholar
  11. Guo ZQ, Cucherousset J, Lek S, Li ZJ, Zhu FY, Tang JF, Liu JS (2013) Comparative study of the reproductive biology of two congeneric and introduced goby species: implications for management strategies. Hydrobiologia 709:89–99CrossRefGoogle Scholar
  12. Guo ZQ, Liu JS, Lek S, Li ZJ, Zhu FY, Tang JF, Cucherousset J (2014) Trophic niche differences between two congeneric goby species: evidence for ontogenetic diet shift and habitat use. Aquat Biol 20:23–33CrossRefGoogle Scholar
  13. Guo ZQ, Liu JS, Lek S, Li ZJ, Zhu FY, Tang JF, Cucherousset J (2016) Age, growth and population dynamics of two congeneric and invasive gobies Rhinogobius giurinus and R. cliffordpopei (Actinopterygii, Gobiidae) in a plateau lake, southwestern China. Hydrobiologia 763:69–79CrossRefGoogle Scholar
  14. Guo ZQ, Liu JS, Lek S, Li ZJ, Zhu FY, Tang JF, Britton R, Cucherousset J (2017) Coexisting invasive gobies reveal no evidence for temporal and trophic niche differentiation in the sublittoral habitat of Lake Erhai, China. Ecol Freshw Fish 26:42–52CrossRefGoogle Scholar
  15. Hall T (2013) BioEdit. http://www.mbio.ncsu.edu/BioEdit/bioedit​.html. Accessed 18 Sept 2013Google Scholar
  16. He Y, Jones J, Armstrong M, Lamberti F, Moens M (2005) The mitochondrial genome of Xiphinema americanum sensu stricto (Nematoda: Enoplea): considerable economization in the length and structural features of encoded genes. J Mol Evol 61:819–833CrossRefPubMedGoogle Scholar
  17. Hu YL, Bao BL, Gong XL (2017) The complete mitochondrial genome sequence of Yongeichthys criniger and phylogenetic studies of Gobiidae. Mitochondr DNA 28:281–282CrossRefGoogle Scholar
  18. Iwasaki W, Fukunaga T, Isagozawa R, Yamada K, Maeda Y, Satoh TP, Sado T, Mabuchi K, Takeshima H, Miya M, Nishida M (2013) MitoFish and MitoAnnotator: a mitochondrial genome database of fish with an accurate and automatic annotation pipeline. Mol Biol Evol 30:2531–2540CrossRefPubMedPubMedCentralGoogle Scholar
  19. Ju MY, Wu JH, Kuo PH, Hsu KC, Wang WK, Lin FJ, Lin HD (2016) Mitochondrial genetic diversity of Rhinogobius giurinus (Teleostei: Gobiidae) in East Asia. Biochem Syst Ecol 69:60–66CrossRefGoogle Scholar
  20. Jun JM, Choi SH, Kum JD (2016) Complete mitochondrial genome of the endemic South Korean species Odontobutis interrupta (Perciformes, Odontobutidae). Mitochondr DNA 27:2957–2959CrossRefGoogle Scholar
  21. Kinouchi M, Kanaya S, Ikemura T, Kudo Y (2000) Detection of tRNA based on the cloverleaf secondary structure. Genome Inform 11:301–302Google Scholar
  22. Liu TX, Jin XX, Wang RX, Xu TJ (2013) Complete sequence of the mitochondrial genome of Odontamblyopus rubicundus (Perciformes: Gobiidae): genome characterization and phylogenetic analysis. J Genet 92:423–432CrossRefPubMedGoogle Scholar
  23. Lowe TM, Eddy SR (1997) tRNA scan-SE 1.21: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964CrossRefPubMedPubMedCentralGoogle Scholar
  24. Masuda Y, Ozawa T, Enami S (1989) Genetic differentiation among eight color types of the freshwater goby, Rhinogobius brunneus, from Western Japan. Ichthyol Res 36:30–41Google Scholar
  25. Miya M, Nishida M (1999) Organization of the mitochondrial genome of a deep-sea fish, Gonostoma gracile (Teleostei: Stomiiformes): first example of transfer RNA gene rearrangements in bony fishes. Mar Biotechnol 1:416–426CrossRefPubMedGoogle Scholar
  26. Miya M, Nishida M (2000) Use of mitogenomic information in teleostean molecular phylogenetics: a tree-based exploration under the maximum-parsimony optimality criterion. Mol Phylogenet Evol 17:437–455CrossRefPubMedGoogle Scholar
  27. Miya M, Takeshima H, Endo H, Ishiguro NB, Inoue JG, Mukai T, Satoh TP, Yamaguchi M, Kawaguchi A, Mabuchi K, Shirai SM, Nishida M (2003) Major patterns of higher teleostean phylogenies: a new perspective based on 100 complete mitochondrial DNA sequences. Mol Phylogenet Evol 26:121–138CrossRefPubMedGoogle Scholar
  28. Moritz C, Dowling TE, Brown WM (1987) Evolution of animal mitochondrial DNA: relevance for population biology and systematic. Annu Rev Ecol Syst 18:269–292CrossRefGoogle Scholar
  29. Naylor GJ, Collins TM, Brown WM (1995) Hydrophobicity phylogeny. Nature 373:555–556CrossRefGoogle Scholar
  30. Oh JN, Kim TW, Kim S (2016) The complete mitochondrial genome of Chaenogobius gulosus (Gobiidae, Perciformes) from the South Sea, Korea. Mitochondr DNA 27:4207–4208CrossRefGoogle Scholar
  31. Ojala D, Montoya J, Attardi G (1981) tRNA punctuation model of RNA processing in human mitochondria. Nature 290:470–474CrossRefPubMedGoogle Scholar
  32. Perna NT, Kocher TD (1995) Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J Mol Evol 41:353–358CrossRefPubMedGoogle Scholar
  33. Sbisà E, Tanzariello F, Reyes F, Pesole G, Saccone C (1997) Mammalian mitochondrial D-loop region structure analysis: identification of new conserved sequences and the functional and evolutional implications. Gene 205:125–140CrossRefPubMedGoogle Scholar
  34. Shadel GS, Clayton DA (1997) Mitochondrial DNA maintenance in vertebrates. Annu Rev Biochem 66:409–435CrossRefPubMedGoogle Scholar
  35. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA 6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  36. Tang JF, Ye SW, Liu JS, Zhang TL, Zhu FY, Guo ZQ, Li ZJ (2013) Status and historical changes of fish community in Erhai Lake. Chin J Oceanol Limnol 31:712–723CrossRefGoogle Scholar
  37. Tomita K, Yokobori S, Oshima T, Ueda T, Watanabe K (2001) The cephalopod Loligo bleekeri mitochondrial genome: multiplied noncoding regions and transposition of tRNA genes. J Mol Evol 54:486–500CrossRefGoogle Scholar
  38. Wu HL, Zhong JS (2008) Fauna sinica, Osteichthyes, Perciformes (V), Gobioidei. Science Press, BeijingGoogle Scholar
  39. Wyman SK, Jansen RK, Boore JL (2004) Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20:3252–3255CrossRefPubMedGoogle Scholar
  40. Xia AJ, Zhong LQ, Chen XH, Bian WJ, Zhang TQ, Shi YB (2015) Complete mitochondrial genome of spined sleeper Eleotris oxycephala (Perciformes, Eleotridae) and phylogenetic consideration. Biochem Syst Ecol 62:11–19CrossRefGoogle Scholar
  41. Xie Y, Li Z, Gregg WP, Li D (2001) Invasive species in China—an overview. Biodivers Conser 10:1317–1341CrossRefGoogle Scholar
  42. Xie LP, Yang XF, Ma ZH, Yang RB (2015) Complete mitochondrial genome of Rhinogobius giurinus (Perciformes: Gobiidae: Gobionellinae). Mitochondr DNA 26:321–322CrossRefGoogle Scholar
  43. Yang QH, Lin Q, He LB, Huang RF, Lin KB, Ge H, Wu JS, Zhou C (2015) The complete mitochondrial genome sequence of Acentrogobius sp. (Gobiiformes: Gobiidae) and phylogenetic studies of Gobiidae. Mitochondr DNA 27:2927–2928Google Scholar
  44. Yuan G, Ru H, Liu X (2010) Fish diversity and fishery resources in lakes of Yunnan Plateau during 2007–2008. J Lake Sci 22:837–841Google Scholar
  45. Zhang DX, Hewitt GM (1997) Insect mitochondrial control region: a review of its structure, evolution and usefulness in evolutionary studies. Biochem Syst Ecol 25:99–120CrossRefGoogle Scholar
  46. Zhao JL, Wang WW, Li SF, Cai WQ (2006) Structure of the mitochondrial DNA control region of the Sinipercine fishes and their phylogenetic relationship. Acta Genet Sin 33:793–799CrossRefPubMedGoogle Scholar
  47. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Genetics Society of Korea and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Fisheries Resources in Inland Water of Jiangsu ProvinceFreshwater Fisheries Research Institute of Jiangsu ProvinceNanjingChina

Personalised recommendations