Deciphering signature of selection affecting beef quality traits in Angus cattle

Abstract

Artificial selection towards a desired phenotype/trait has modified the genomes of livestock dramatically that generated breeds that greatly differ in morphology, production and environmental adaptation traits. Angus cattle are among the famous cattle breeds developed for superior beef quality. This paper aimed at exploring genomic regions under selection in Angus cattle that are associated with meat quality traits and other associated phenotypes. The whole genome of 10 Angus cattle was compared with 11 Hanwoo (A-H) and 9 Jersey (A-J) cattle breeds using a cross-population composite likelihood ratio (XP-CLR) statistical method. The top 1% of the empirical distribution was taken as significant and annotated using UMD3.1. As a result, 255 and 210 genes were revealed under selection from A–H and A–J comparisons, respectively. The WebGestalt gene ontology analysis resulted in sixteen (A–H) and five (A–J) significantly enriched KEGG pathways. Several pathways associated with meat quality traits (insulin signaling, type II diabetes mellitus pathway, focal adhesion pathway, and ECM-receptor interaction), and feeding efficiency (olfactory transduction, tight junction, and metabolic pathways) were enriched. Genes affecting beef quality traits (e.g., FABP3, FTO, DGAT2, ACS, ACAA2, CPE, TNNI1), stature and body size (e.g., PLAG1, LYN, CHCHD7, RPS20), fertility and dystocia (e.g., ESR1, RPS20, PPP2R1A, GHRL, PLAG1), feeding efficiency (e.g., PIK3CD, DNAJC28, DNAJC3, GHRL, PLAG1), coat color (e.g., MC1-R) and genetic disorders (e.g., ITGB6, PLAG1) were found to be under positive selection in Angus cattle. The study identified genes and pathways that are related to meat quality traits and other phenotypes of Angus cattle. The findings in this study, after validation using additional or independent dataset, will provide useful information for the study of Angus cattle in particular and beef cattle in general.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abo-Ismail MK, Vander Voort G, Squires JJ, Swanson KC, Mandell IB, Liao X et al (2014) Single nucleotide polymorphisms for feed efficiency and performance in crossbred beef cattle. BMC Genet 15(1):14

    PubMed  PubMed Central  Article  Google Scholar 

  2. Albertí P, Panea B, Sañudo C, Olleta J, Ripoll G, Ertbjerg P et al (2008) Live weight, body size and carcass characteristics of young bulls of fifteen European breeds. Livest Sci 114(1):19–30

    Article  Google Scholar 

  3. Archer J, Arthur P, Parnell P, Van de Ven R (1998) Effect of divergent selection for yearling growth rate on female reproductive performance in Angus cattle. Livest Prod Sci 57(1):33–40

    Article  Google Scholar 

  4. Arthur P, Archer J, Johnston D, Herd R, Richardson E, Parnell P (2001) Genetic and phenotypic variance and covariance components for feed intake, feed efficiency, and other postweaning traits in Angus cattle. J Anim Sci 79(11):2805–2811

    CAS  PubMed  Article  Google Scholar 

  5. Bernard C, Cassar-Malek I, Le Cunff M, Dubroeucq H, Renand G, Hocquette J-F (2007) New indicators of beef sensory quality revealed by expression of specific genes. J Agric Food Chem 55(13):5229–5237

    CAS  PubMed  Article  Google Scholar 

  6. Berton MP, Fonseca LF, Gimenez DF, Utembergue BL, Cesar AS, Coutinho LL et al (2016) Gene expression profile of intramuscular muscle in Nellore cattle with extreme values of fatty acid. BMC Genom 17(1):972

    Article  Google Scholar 

  7. Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A et al (2009) ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25(8):1091–1093

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. Blecha I, Siqueira F, Ferreira A, Feijó G, Junior RT, Medeiros S et al (2015) Identification and evaluation of polymorphisms in FABP3 and FABP4 in beef cattle. Genet Mol Res 14(4):16353–16363

    CAS  PubMed  Article  Google Scholar 

  9. Browning SR, Browning BL (2007) Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am J Hum Genet 81(5):1084–1097

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. Cavallaro G (2010) Genome-wide analysis of eukaryotic twin CX 9 C proteins. Mol BioSyst 6(12):2459–2470

    CAS  PubMed  Article  Google Scholar 

  11. Chambaz A, Scheeder M, Kreuzer M, Dufey P-A (2003) Meat quality of Angus, Simmental, Charolais and Limousin steers compared at the same intramuscular fat content. Meat Sci 63(4):491–500

    CAS  PubMed  Article  Google Scholar 

  12. Chen H, Patterson N, Reich D (2010) Population differentiation as a test for selective sweeps. Genome Res 20(3):393–402

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. Chung E-R (2014) Novel SNP in the coding region of the FTO gene is associated with marbling score in Hanwoo (Korean cattle). J Anim Sci Technol 56(1):27

    PubMed  PubMed Central  Article  Google Scholar 

  14. Ciepłoch A, Rutkowska K, Oprządek J, Poławska E (2017) Genetic disorders in beef cattle: a review. Genes Genom. doi:10.1007/s13258-017-0525-8

    Article  Google Scholar 

  15. Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L et al (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6(2):80–92

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. Cole J, Waurich B, Wensch-Dorendorf M, Bickhart D, Swalve H (2014) A genome-wide association study of calf birth weight in Holstein cattle using single nucleotide polymorphisms and phenotypes predicted from auxiliary traits. J Dairy Sci 97(5):3156–3172

    CAS  PubMed  Article  Google Scholar 

  17. Cui H-X, Liu R-R, Zhao G-P, Zheng M-Q, Chen J-L, Wen J (2012a) Identification of differentially expressed genes and pathways for intramuscular fat deposition in pectoralis major tissues of fast-and slow-growing chickens. BMC Genom 13(1):213

    CAS  Article  Google Scholar 

  18. Cui Y, Wang W, Dong N, Lou J, Srinivasan DK, Cheng W et al (2012b) Role of corin in trophoblast invasion and uterine spiral artery remodelling in pregnancy. Nature 484(7393):246–250

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. Desai SS, Roy BS, Mahale SD (2013) Mutations and polymorphisms in FSH receptor: functional implications in human reproduction. Reproduction 146(6):R235-R248

    Article  Google Scholar 

  20. Do DN, Strathe AB, Ostersen T, Pant SD, Kadarmideen H (2014) Genome-wide association and pathway analysis of feed efficiency in pigs reveal candidate genes and pathways for residual feed intake. Front Genet. doi:10.3389/fgene.2014.00307

    PubMed  PubMed Central  Article  Google Scholar 

  21. Donato J Jr, Frazão R (2016) Interactions between prolactin and kisspeptin to control reproduction. Arch Endocrinol Metab 60(6):587–595

    PubMed  Article  Google Scholar 

  22. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–2620

    CAS  PubMed  Article  Google Scholar 

  24. Fink T, Tiplady K, Lopdell T, Johnson T, Snell RG, Spelman RJ et al (2017) Functional confirmation of PLAG1 as the candidate causative gene underlying major pleiotropic effects on body weight and milk characteristics. Sci Rep. doi:10.1038/srep44793

    Article  PubMed  PubMed Central  Google Scholar 

  25. Fortes M, Kemper K, Sasazaki S, Reverter A, Pryce J, Barendse W et al (2013) Evidence for pleiotropism and recent selection in the PLAG1 region in Australian Beef cattle. Anim Genet 44(6):636–647

    CAS  PubMed  Article  Google Scholar 

  26. Gheyas AA, Boschiero C, Eory L, Ralph H, Kuo R, Woolliams JA et al (2015) Functional classification of 15 million SNPs detected from diverse chicken populations. DNA Res 22:205–217

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. Guziewicz K, Owczarek-Lipska M, Küffer J, Schelling C, Tontis A, Denis C et al (2007) The locus for bovine dilated cardiomyopathy maps to chromosome 18. Anim Genet 38(3):265–269

    CAS  PubMed  Article  Google Scholar 

  28. Hausman G, Dodson M, Ajuwon K, Azain M, Barnes K, Guan L et al (2009) Board-invited review: the biology and regulation of preadipocytes and adipocytes in meat animals. J Anim Sci 87(4):1218–1246

    CAS  PubMed  Article  Google Scholar 

  29. Jeong J, Kwon E, Im S, Seo K, Baik M (2012) Expression of fat deposition and fat removal genes is associated with intramuscular fat content in longissimus dorsi muscle of Korean cattle steers. J Anim Sci 90(6):2044–2053

    CAS  PubMed  Article  Google Scholar 

  30. Jovanović J, Takagi J, Choulier L, Abrescia NG, Stuart DI, Van Der Merwe PA et al (2007) αVβ6 Is a novel receptor for human fibrillin-1 comparative studies of molecular determinants underlying integrin-Rgd affinity and specificity. J Biol Chem 282(9):6743–6751

    PubMed  Article  Google Scholar 

  31. Juma AR, Damdimopoulou PE, Grommen SV, Van de Ven WJ, De Groef B (2016) Emerging role of PLAG1 as a regulator of growth and reproduction. J Endocrinol 228(2):R45-R56

    Google Scholar 

  32. Kemper KE, Visscher PM, Goddard ME (2012) Genetic architecture of body size in mammals. Genome Biol 13(4):244

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. Khatib H, Huang W, Wang X, Tran A, Bindrim A, Schutzkus V et al (2009) Single gene and gene interaction effects on fertilization and embryonic survival rates in cattle. J Dairy Sci 92(5):2238–2247

    CAS  PubMed  Article  Google Scholar 

  34. Kim J, Hanotte O, Mwai OA, Dessie T, Bashir S, Diallo B et al (2017) The genome landscape of indigenous African cattle. Genome Biol 18(1):34

    PubMed  PubMed Central  Article  Google Scholar 

  35. Klungland H, Vage D, Gomez-Raya L, Adalsteinsson S, Lien S (1995) The role of melanocyte-stimulating hormone (MSH) receptor in bovine coat color determination. Mamm Genome 6(9):636–639

    CAS  PubMed  Article  Google Scholar 

  36. Ladeira MM, Schoonmaker JP, Gionbelli MP, Dias JC, Gionbelli TR, Carvalho JRR et al (2016) Nutrigenomics and Beef quality: a review about Lipogenesis. Int J Mol Sci 17(6):918

    PubMed Central  Article  Google Scholar 

  37. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. Lazari MFM, Lucas TFG, Yasuhara F, Gomes GRO, Siu ER, Royer C et al (2009) Estrogen receptors and function in the male reproductive system. Arq Bras Endocrinol Metabol 53(8):923–933

    PubMed  Article  Google Scholar 

  39. Lee H-J, Jang M, Kim H, Kwak W, Park W, Hwang JY et al (2013) Comparative transcriptome analysis of adipose tissues reveals that ECM-receptor interaction is involved in the depot-specific adipogenesis in cattle. PLoS ONE 8(6):e66267

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. Lee H-J, Kim J, Lee T, Son JK, Yoon H-B, Baek K-S et al (2014a) Deciphering the genetic blueprint behind Holstein milk proteins and production. Genome Biol Evol 6(6):1366–1374

    PubMed  PubMed Central  Article  Google Scholar 

  41. Lee T-H, Guo H, Wang X, Kim C, Paterson AH (2014b) SNPhylo: a pipeline to construct a phylogenetic tree from huge SNP data. BMC Genom 15(1):162

    Article  Google Scholar 

  42. Li Y, Xu Z, Li H, Xiong Y, Zuo B (2010) Differential transcriptional analysis between red and white skeletal muscle of Chinese Meishan pigs. Int J Biol Sci 6(4):350–360

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. Littlejohn M, Grala T, Sanders K, Walker C, Waghorn G, Macdonald K et al (2012) Genetic variation in PLAG1 associates with early life body weight and peripubertal weight and growth in Bos taurus. Anim Genet 43(5):591–594

    CAS  PubMed  Article  Google Scholar 

  44. Madsen L, Petersen RK, Kristiansen K (2005) Regulation of adipocyte differentiation and function by polyunsaturated fatty acids. Biochim Biophys Acta 1740(2):266–286

    CAS  PubMed  Article  Google Scholar 

  45. Maltecca C, Gray K, Weigel K, Cassady J, Ashwell M (2011) A genome-wide association study of direct gestation length in US Holstein and Italian Brown populations. Anim Genet 42(6):585–591

    CAS  PubMed  Article  Google Scholar 

  46. McClure M, Morsci N, Schnabel R, Kim J, Yao P, Rolf M et al (2010) A genome scan for quantitative trait loci influencing carcass, post-natal growth and reproductive traits in commercial Angus cattle. Anim Genet 41(6):597–607

    CAS  PubMed  Article  Google Scholar 

  47. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A et al (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20(9):1297–1303

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. Nagashima T, Li Q, Clementi C, Lydon JP, DeMayo FJ, Matzuk MM (2013) BMPR2 is required for postimplantation uterine function and pregnancy maintenance. J Clin Invest 123(6):2539–2550

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. Naggert JK, Fricker LD, Varlamov O, Nishina PM, Rouille Y, Steiner DF et al (1995) Hyperproinsulinaemia in obese fat/fat mice associated with a carboxypeptidase E mutation which reduces enzyme activity. Nat Genet 10(2):135–142

    CAS  PubMed  Article  Google Scholar 

  50. Ngu NT, Nhan NTH (2012) Analysis of troponin I gene polymorphisms and meat quality in Mongcai pigs. S Afr J Anim Sci 42(3):288–295

    Article  Google Scholar 

  51. Nishimura S, Watanabe T, Mizoshita K, Tatsuda K, Fujita T, Watanabe N et al (2012) Genome-wide association study identified three major QTL for carcass weight including the PLAG1-CHCHD7 QTN for stature in Japanese Black cattle. BMC Genet 13(1):40

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. O’brien AMP, Utsunomiya YT, Mészáros G, Bickhart DM, Liu GE, Van Tassell CP et al (2014) Assessing signatures of selection through variation in linkage disequilibrium between taurine and indicine cattle. Genet Sel Evol 46(1):19

    Article  Google Scholar 

  53. Pierzchala M, Hoekman A, Urbanski P, Kruijt L, Kristensen L, Young JF et al (2014) Validation of biomarkers for loin meat quality (M. longissimus) of pigs. J Anim Breed Genet 131(4):258–270

    CAS  PubMed  Article  Google Scholar 

  54. Plotree D, Plotgram D (1989) PHYLIP-phylogeny inference package (version 3.2). Cladistics 5(163):6

    Google Scholar 

  55. Puig-Oliveras A, Revilla M, Castelló A, Fernández AI, Folch JM, Ballester M (2016) Expression-based GWAS identifies variants, gene interactions and key regulators affecting intramuscular fatty acid content and composition in porcine meat. Sci Rep. doi:10.1038/srep31803

    PubMed  PubMed Central  Article  Google Scholar 

  56. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81(3):559–575

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. Rolf M, Taylor J, Schnabel R, McKay S, McClure M, Northcutt S et al (2012) Genome-wide association analysis for feed efficiency in Angus cattle. Anim Genet 43(4):367–374

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. Sherman E, Nkrumah J, Murdoch B, Li C, Wang Z, Fu A et al (2008) Polymorphisms and haplotypes in the bovine NPY, GHR, GHRL, IGF2, UCP2, and UCP3 genes and their associations with measures of growth, performance, feed efficiency and carcass merit in beef cattle. J Anim Sci 86(1):1–16

    CAS  PubMed  Article  Google Scholar 

  59. Shin S, Chung E (2007) SNP detection of carboxypeptidase E gene and its association with meat quality and carcass traits in Korean cattle. Asian Australas J Anim Sciences 20(3):328

    CAS  Article  Google Scholar 

  60. Soares MJ, Chakraborty D, Kubota K, Renaud SJ, Rumi MK (2014) Adaptive mechanisms controlling uterine spiral artery remodeling during the establishment of pregnancy. Int J Dev Biol 58:247

    PubMed  PubMed Central  Article  Google Scholar 

  61. Stafuzza NB, Zerlotini A, Lobo FP, Yamagishi MEB, Chud TCS, Caetano AR et al (2017) Single nucleotide variants and InDels identified from whole-genome re-sequencing of Guzerat, Gyr, Girolando and Holstein cattle breeds. PLoS ONE 12(3):e0173954

    PubMed  PubMed Central  Article  Google Scholar 

  62. Stockton M (2003) Genetics of feed efficiency in Angus Cattle 1 Florida Beef Report

  63. Takasuga A (2016) PLAG1 and NCAPG-LCORL in livestock. Anim Sci J 87:159–167

    CAS  PubMed  Article  Google Scholar 

  64. Taye M, Kim J, Yoon SH, Lee W, Hanotte O, Dessie T et al (2017) Whole genome scan reveals the genetic signature of African Ankole cattle breed and potential for higher quality beef. BMC Genet 18(1):11

    PubMed  PubMed Central  Article  Google Scholar 

  65. Tempfli K, Kiss B, Szalai K, Simon Z, Pongrácz L, Bali Papp Á (2016) Differential expression of six genes in fat-type Hungarian Mangalica and other pigs. Arch Anim Breed 59(2):259–265

    Article  Google Scholar 

  66. The Bovine HapMap Consortium (2009) Genome-wide survey of SNP variation uncovers the genetic structure of cattle breeds. Science 324(5926):528–532

    PubMed Central  Article  Google Scholar 

  67. Utsunomiya YT, Do Carmo AS, Carvalheiro R, Neves HH, Matos MC, Zavarez LB et al (2013) Genome-wide association study for birth weight in Nellore cattle points to previously described orthologous genes affecting human and bovine height. BMC Genet 14(1):52

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. Utsunomiya Y, Pérez O, Sonstegard T, Sölkner J, Garcia J (2014) Genomic data as the” hitchhiker’s guide” to cattle adaptation: tracking the milestones of past selection in the bovine genome. Front Genet 6:36

    Google Scholar 

  69. Våge DI, Klungland H, Lu D, Cone RD (1999) Molecular and pharmacological characterization of dominant black coat color in sheep. Mamm Genome 10(1):39–43

    PubMed  Article  Google Scholar 

  70. Wang H, Zheng Y, Wang G, Li H (2013a) Identification of microRNA and bioinformatics target gene analysis in beef cattle intramuscular fat and subcutaneous fat. Mol Biosyst 9(8):2154–2162

    CAS  PubMed  Article  Google Scholar 

  71. Wang J, Duncan D, Shi Z, Zhang B (2013b) WEB-based gene set analysis toolkit (WebGestalt): update 2013. Nucleic Acids Res 41(W1):W77-W83

    PubMed Central  Article  Google Scholar 

  72. Wei S, Zan L, Ujan JA, Wang H, Yang Y, Adoligbe C (2011) Novel polymorphism of the bovine fat mass and obesity-associated (FTO) gene are related to backfat thickness and longissimus muscle area in five Chinese native cattle breeds. Afr J Biotechnol 10(15):2820–2824

    CAS  Article  Google Scholar 

  73. Whitlock BK (2010) Heritable birth defects in cattle. Applied Reproductive Strategies Conference Proceedings, pp 146–153

  74. Whitlock BK, Kaiser L, Maxwell HS (2008) Heritable bovine fetal abnormalities. Theriogenology 70(3):535–549

    CAS  PubMed  Article  Google Scholar 

  75. Yang H, Xu Z, Lei M, Li F, Deng C, Xiong Y et al (2010) Association of 3 polymorphisms in porcine troponin I genes (TNNI1 andTNNI2) with meat quality traits. J Appl Genet 51(1):51–57

    CAS  PubMed  Article  Google Scholar 

  76. Zaborski D, Grzesiak W, Pilarczyk R (2016) Detection of difficult calvings in the Polish Holstein-Friesian Black-and-White heifers. J Appl Anim Res 44(1):42–53

    Article  Google Scholar 

  77. Zhao F, McParland S, Kearney F, Du L, Berry DP (2015) Detection of selection signatures in dairy and beef cattle using high-density genomic information. Genet Sel Evol 47(1):49

    PubMed  PubMed Central  Article  Google Scholar 

  78. Zheng X, Levine D, Shen J, Gogarten SM, Laurie C, Weir BS (2012) A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 28(24):3326–3328

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. Zhou N, Lee WR, Abasht B (2015) Messenger RNA sequencing and pathway analysis provide novel insights into the biological basis of chickens’ feed efficiency. BMC Genom 16(1):195

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Next-Generation BioGreen 21 Program (Project No. PJ01111501), Rural Development Administration, Republic of Korea.

Author information

Affiliations

Authors

Contributions

MT conceived and designed the study, analyzed the data, and wrote the paper; JY helped analyzing the data; TD, SC, SJO, HKL and HK designed the project; HK organized and supervised the project.

Corresponding author

Correspondence to Heebal Kim.

Ethics declarations

Availability of data and material

All information supporting the results of this manuscript are included within the article and additional files.

Conflict of interest

Mengistie Taye declares that he does not have conflict of interest. Joon Yoon declares that he does not have conflict of interest. Tadelle Dessie declares that he does not have conflict of interest. Seoae Cho declares that she does not have conflict of interest. Sung Jong Oh declares that he does not have conflict of interest. Hak-Kyo Lee declares that he does not have conflict of interest. Heebal Kim declares that he does not have conflict of interest.

Ethical approval

Collection of DNA samples and genomic analysis were performed with the approval by: the Institutional Animal Care and Use Committee of the National Institute of Animal Science (No. NIAS-2014-093) for Angus and Jersey, and the Committee on Ethics of Animal Experiments of the National Institute of Animal Science (Permit Number: NIAS2015-774) for Hanwoo cattle.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Taye, M., Yoon, J., Dessie, T. et al. Deciphering signature of selection affecting beef quality traits in Angus cattle. Genes Genom 40, 63–75 (2018). https://doi.org/10.1007/s13258-017-0610-z

Download citation

Keywords

  • Angus cattle
  • Beef quality
  • Feeding efficiency
  • KEGG pathways
  • Signature of selection
  • XP-CLR