Advertisement

Genes & Genomics

, Volume 39, Issue 10, pp 1047–1057 | Cite as

Systematic identification and characterization of miRNAs and piRNAs from porcine testes

  • Bo Weng
  • Maoliang Ran
  • Bin ChenEmail author
  • Maisheng Wu
  • Fuzhi Peng
  • Lianhua Dong
  • Changqing He
  • Shanwen Zhang
  • Zhaohui Li
Research Article
  • 170 Downloads

Abstract

microRNAs (miRNAs) and PIWI-interacting RNAs (piRNAs) execute important regulatory roles in testis development and spermatogenesis, while previous studies mainly focus on the expression profiles in immature and mature porcine testes, which may cause a bottleneck for further understanding their complex physiological processes in porcine testes development and spermatogenesis. Thus, we presented the expression and characterization of miRNAs and piRNAs in DS (60-day-old), DN (90-day-old), DT (120-day-old) and DF (150-day-old) pig testes. In total, 12,834,628, 13,359,726, 12,851,249 and 12,938,601 clean reads were generated from these libraries, respectively. 293 mature and 36 novel miRNAs as well as 4923 piRNA clusters were identified from pig testes, and they showed an age-dependent manner. GO enrichment analysis of miRNA target genes and piRNA generated genes showed that they participated widely in regulating the pig spermatogenesis process. In addition, 12 differentially expressed miRNAs were randomly selected to validate using qRT-PCR. Our results provided novel comprehensive expression profiles of miRNAs and piRNAs in pig testes at different stages of sexual maturity, which will promote our knowledge of them in regulating the pig testes development and spermatogenesis process.

Keywords

MiRNAs PiRNAs Expression profile Testes Pig RNA-seq 

Notes

Acknowledgements

This work was financially supported by China Agriculture Research System (CARS-36), Hunan Provincial Innovation Foundation for Postgraduate (CX2015B251) and Excellent Doctoral Dissertation Cultivating Fund of Hunan Agricultural University (YB2015001).

Author contributions

BW, MR and BC conceived and designed the experiments. BW, MR, BC, MW, FP, LD, CH, SZ, ZL performed the experiments. BW and MR analyzed the data and wrote the manuscript. All authors have read and approved the final manuscript. Authors would like to thank JY for critical reading of the manuscript.

Compliance with ethical standards

Conflict of interest

Bo Weng declares that he/she does not have conflict of interest. Maoliang Ran declares that he/she does not have conflict of interest. Bin Chen declares that he/she does not have conflict of interest. Maisheng Wu declares that he/she does not have conflict of interest. Fuzhi Peng declares that he/she does not have conflict of interest. Lianhua Dong declares that he/she does not have conflict of interest. Changqing He declares that he/she does not have conflict of interest. Shanwen Zhang declares that he/she does not have conflict of interest. Zhaohui Li declares that he/she does not have conflict of interest.

Ethical approval

Animals care was performed in accordance with the guidelines of the declaration of Helsinki. All experimental protocols were approved by the animal welfare committee of College of Animal Science and Technology, Hunan Agriculture University, Changsha city, Hunan province, P. R. China.

Supplementary material

13258_2017_573_MOESM1_ESM.tif (327 kb)
Supplementary material 1 (TIF 326 KB)
13258_2017_573_MOESM2_ESM.tif (7.5 mb)
Supplementary material 2 (TIF 7692 KB)
13258_2017_573_MOESM3_ESM.tif (2.3 mb)
Supplementary material 3 (TIF 2313 KB)
13258_2017_573_MOESM4_ESM.xls (18 kb)
Supplementary material 4 (XLS 18 KB)
13258_2017_573_MOESM5_ESM.xlsx (11 kb)
Supplementary material 5 (XLSX 11 KB)
13258_2017_573_MOESM6_ESM.xlsx (11 kb)
Supplementary material 6 (XLSX 11 KB)
13258_2017_573_MOESM7_ESM.xlsx (12 kb)
Supplementary material 7 (XLSX 11 KB)
13258_2017_573_MOESM8_ESM.xlsx (37 kb)
Supplementary material 8 (XLSX 36 KB)
13258_2017_573_MOESM9_ESM.xlsx (14 kb)
Supplementary material 9 (XLSX 14 KB)
13258_2017_573_MOESM10_ESM.xlsx (19 kb)
Supplementary material 10 (XLSX 19 KB)
13258_2017_573_MOESM11_ESM.xlsx (731 kb)
Supplementary material 11 (XLSX 731 KB)
13258_2017_573_MOESM12_ESM.xlsx (335 kb)
Supplementary material 12 (XLSX 335 KB)
13258_2017_573_MOESM13_ESM.xlsx (145 kb)
Supplementary material 13 (XLSX 144 KB)
13258_2017_573_MOESM14_ESM.xlsx (20 kb)
Supplementary material 14 (XLSX 20 KB)

References

  1. Aravin A, Gaidatzis D, Pfeffer S, Lagos-Quintana M, Landgraf P, Iovino N, Morris P, Brownstein MJ, Kuramochi-Miyagawa S, Nakano T et al (2006) A novel class of small RNAs bind to MILI protein in mouse testes. Nature 442:203–207PubMedGoogle Scholar
  2. Beyret E, Liu N, Lin H (2012) piRNA biogenesis during adult spermatogenesis in mice is independent of the ping-pong mechanism. Cell Res 22:1429–1439CrossRefPubMedPubMedCentralGoogle Scholar
  3. Busk PK (2014) A tool for design of primers for microRNA-specific quantitative RT-qPCR. BMC Bioinform 15:29CrossRefGoogle Scholar
  4. Cora E, Pandey RR, Xiol J, Taylor J, Sachidanandam R, McCarthy AA, Pillai RS (2014) The MID-PIWI module of Piwi proteins specifies nucleotide- and strand-biases of piRNAs. RNA 20:773–781CrossRefPubMedPubMedCentralGoogle Scholar
  5. Cui L, Fang L, Shi B, Qiu S, Ye Y (2015) Spermatozoa micro ribonucleic acid-34c level is correlated with intracytoplasmic sperm injection outcomes. Fertil Steril 104(312–7):e1Google Scholar
  6. de Mateo S, Sassone-Corsi P (2014) Regulation of spermatogenesis by small non-coding RNAs: role of the germ granule. Semin Cell Dev Biol 29:84–92CrossRefPubMedPubMedCentralGoogle Scholar
  7. Eisenberg I, Kotaja N, Goldman-Wohl D, Imbar T (2015) microRNA in human reproduction. Adv Exp Med Biol 888:353–387CrossRefPubMedGoogle Scholar
  8. Fu Q, Wang PJ (2014) Mammalian piRNAs: biogenesis, function, and mysteries. Spermatogenesis 4:e27889CrossRefPubMedPubMedCentralGoogle Scholar
  9. Girard A, Sachidanandam R, Hannon GJ, Carmell MA (2006) A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature 442:199–202PubMedGoogle Scholar
  10. Grivna ST, Beyret E, Wang Z, Lin H (2006) A novel class of small RNAs in mouse spermatogenic cells. Genes Dev 20:1709–1714CrossRefPubMedPubMedCentralGoogle Scholar
  11. He Z, Jiang J, Kokkinaki M, Tang L, Zeng W, Gallicano I, Dobrinski I, Dym M (2013) MiRNA-20 and mirna-106a regulate spermatogonial stem cell renewal at the post-transcriptional level via targeting STAT3 and Ccnd1. Stem Cells 31:2205–2217CrossRefPubMedGoogle Scholar
  12. Holt JE, Stanger SJ, Nixon B, McLaughlin EA (2016) Non-coding RNA in spermatogenesis and epididymal maturation. Adv Exp Med Biol 886:95–120CrossRefPubMedGoogle Scholar
  13. Jan SZ, Hamer G, Repping S, de Rooij DG, van Pelt AM, Vormer TL (2012) Molecular control of rodent spermatogenesis. Biochim Biophys Acta 1822:1838–1850CrossRefPubMedGoogle Scholar
  14. Kawaoka S, Izumi N, Katsuma S, Tomari Y (2011) 3′ end formation of PIWI-interacting RNAs in vitro. Mol Cell 43:1015–1022CrossRefPubMedGoogle Scholar
  15. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25CrossRefPubMedPubMedCentralGoogle Scholar
  16. Le Thomas A, Stuwe E, Li S, Du J, Marinov G, Rozhkov N, Chen YC, Luo Y, Sachidanandam R, Toth KF et al (2014) Transgenerationally inherited piRNAs trigger piRNA biogenesis by changing the chromatin of piRNA clusters and inducing precursor processing. Genes Dev 28:1667–1680CrossRefPubMedPubMedCentralGoogle Scholar
  17. Li M, Yu M, Liu C, Zhu H, He X, Peng S, Hua J (2013a) miR-34c works downstream of p53 leading to dairy goat male germline stem-cell (mGSCs) apoptosis. Cell Prolif 46:223–231CrossRefPubMedGoogle Scholar
  18. Li M, Yu M, Liu C, Zhu H, Hua J (2013b) Expression of miR-34c in response to overexpression of Boule and Stra8 in dairy goat male germ line stem cells (mGSCs). Cell Biochem Funct 31:281–288CrossRefPubMedGoogle Scholar
  19. Li Y, Li J, Fang C, Shi L, Tan J, Xiong Y, Bin F, Li C (2016) Genome-wide differential expression of genes and small RNAs in testis of two different porcine breeds and at two different ages. Sci Rep 6:26852CrossRefPubMedPubMedCentralGoogle Scholar
  20. Lian C, Sun B, Niu S, Yang R, Liu B, Lu C, Meng J, Qiu Z, Zhang L, Zhao Z (2012) A comparative profile of the microRNA transcriptome in immature and mature porcine testes using Solexa deep sequencing. FEBS J 279:964–975CrossRefPubMedGoogle Scholar
  21. Liang X, Zhou D, Wei C, Luo H, Liu J, Fu R, Cui S (2012) MicroRNA-34c enhances murine male germ cell apoptosis through targeting ATF1. PLoS ONE 7:e33861CrossRefPubMedPubMedCentralGoogle Scholar
  22. Liu G, Lei B, Li Y, Tong K, Ding Y, Luo L, Xia X, Jiang S, Deng C, Xiong Y et al (2012a) Discovery of potential piRNAs from next generation sequences of the sexually mature porcine testes. PLoS ONE 7:e34770CrossRefPubMedPubMedCentralGoogle Scholar
  23. Liu WM, Pang RT, Chiu PC, Wong BP, Lao K, Lee KF, Yeung WS (2012b) Sperm-borne microRNA-34c is required for the first cleavage division in mouse. Proc Natl Acad Sci U S A 109:490–494CrossRefPubMedGoogle Scholar
  24. Luo LF, Hou CC, Yang WX (2016) Small non-coding RNAs and their associated proteins in spermatogenesis. Gene 578:141–157CrossRefPubMedGoogle Scholar
  25. Niu Z, Goodyear SM, Rao S, Wu X, Tobias JW, Avarbock MR, Brinster RL (2011) MicroRNA-21 regulates the self-renewal of mouse spermatogonial stem cells. Proc Natl Acad Sci U S A 108:12740–12745CrossRefPubMedPubMedCentralGoogle Scholar
  26. Niu B, Wu J, Mu H, Li B, Wu C, He X, Bai C, Li G, Hua J (2016) miR-204 Regulates the proliferation of dairy goat spermatogonial stem cells via targeting to Sirt1. Rejuvenation Res 19:120–130CrossRefPubMedGoogle Scholar
  27. Quenerch’du E, Anand A, Kai T (2016) The piRNA pathway is developmentally regulated during spermatogenesis in Drosophila. RNA 22:1044–1054CrossRefPubMedPubMedCentralGoogle Scholar
  28. Ran ML, Chen B, Wu MS, Liu XC, He CQ, Yang AQ, Li Z, Xiang YJ, Li ZH, Zhang SW (2015) Integrated analysis of miRNA and mRNA expression profiles in development of porcine testes. RSC Adv 5: 63439–63449CrossRefGoogle Scholar
  29. Ran M, Chen B, Li Z, Wu M, Liu X, He C, Zhang S, Li Z (2016) Systematic identification of long noncoding RNAs in immature and mature porcine testes. Biol Reprod 94:77CrossRefPubMedGoogle Scholar
  30. Tong MH, Mitchell D, Evanoff R, Griswold MD (2011) Expression of Mirlet7 family microRNAs in response to retinoic acid-induced spermatogonial differentiation in mice. Biol Reprod 85:189–197CrossRefPubMedPubMedCentralGoogle Scholar
  31. Wang L, Feng Z, Wang X, Wang X, Zhang X (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26:136–138CrossRefPubMedGoogle Scholar
  32. Watanabe T, Lin H (2014) Posttranscriptional regulation of gene expression by Piwi proteins and piRNAs. Mol Cell 56:18–27CrossRefPubMedPubMedCentralGoogle Scholar
  33. Wu J, Bao J, Wang L, Hu Y, Xu C (2011) MicroRNA-184 downregulates nuclear receptor corepressor 2 in mouse spermatogenesis. BMC Dev Biol 11:64CrossRefPubMedPubMedCentralGoogle Scholar
  34. Yamtich J, Heo SJ, Dhahbi J, Martin DI, Boffelli D (2015) piRNA-like small RNAs mark extended 3′UTRs present in germ and somatic cells. BMC Genomics 16:462CrossRefPubMedPubMedCentralGoogle Scholar
  35. Yang Q, Hua J, Wang L, Xu B, Zhang H, Ye N, Zhang Z, Yu D, Cooke HJ, Zhang Y et al (2013a) MicroRNA and piRNA profiles in normal human testis detected by next generation sequencing. PLoS ONE 8:e66809CrossRefPubMedPubMedCentralGoogle Scholar
  36. Yang QE, Racicot KE, Kaucher AV, Oatley MJ, Oatley JM (2013b) MicroRNAs 221 and 222 regulate the undifferentiated state in mammalian male germ cells. Development 140: 280–290CrossRefPubMedPubMedCentralGoogle Scholar
  37. Yu M, Mu H, Niu Z, Chu Z, Zhu H, Hua J (2014) miR-34c enhances mouse spermatogonial stem cells differentiation by targeting Nanos2. J Cell Biochem 115:232–242CrossRefPubMedGoogle Scholar
  38. Zhang Y, Wang X, Kang L (2011) A k-mer scheme to predict piRNAs and characterize locust piRNAs. Bioinformatics 27:771–776CrossRefPubMedPubMedCentralGoogle Scholar
  39. Zhang S, Yu M, Liu C, Wang L, Hu Y, Bai Y, Hua J (2012) MIR-34c regulates mouse embryonic stem cells differentiation into male germ-like cells through RARg. Cell Biochem Funct 30:623–632CrossRefPubMedGoogle Scholar
  40. Zhang S, Zhang Y, Yang C, Zhang W, Ju Z, Wang X, Jiang Q, Sun Y, Huang J, Zhong J et al (2015a) TNP1 functional SNPs in bta-miR-532 and bta-miR-204 target sites are associated with semen quality traits in Chinese holstein bulls. Biol Reprod 92:139PubMedGoogle Scholar
  41. Zhang X, Li C, Liu X, Lu C, Bai C, Zhao Z, Sun B (2015b) Differential expression of miR-499 and validation of predicted target genes in the testicular tissue of swine at different developmental stages. DNA Cell Biol 34:464–469CrossRefPubMedPubMedCentralGoogle Scholar
  42. Zhou L, Chen J, Li Z, Li X, Hu X, Huang Y, Zhao X, Liang C, Wang Y, Sun L et al (2010) Integrated profiling of microRNAs and mRNAs: microRNAs located on Xq27.3 associate with clear cell renal cell carcinoma. PLoS ONE 5:e15224CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Genetics Society of Korea and Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Bo Weng
    • 1
    • 3
  • Maoliang Ran
    • 1
    • 3
  • Bin Chen
    • 1
    • 3
    Email author
  • Maisheng Wu
    • 2
  • Fuzhi Peng
    • 1
    • 3
  • Lianhua Dong
    • 1
    • 3
  • Changqing He
    • 1
    • 3
  • Shanwen Zhang
    • 2
  • Zhaohui Li
    • 2
  1. 1.College of Animal Science and TechnologyHunan Agriculture UniversityChangshaChina
  2. 2.Xiangtan Bureau of Animal Husbandry and Veterinary Medicine and Aquatic ProductXiangtanChina
  3. 3.Hunan Provincial Key Laboratory for Genetic Improvement of Domestic AnimalChangshaChina

Personalised recommendations