Skip to main content

Whole genome sequencing and functional features of UMX-103: a new Bacillus strain with biosurfactant producing capability

Abstract

The genus Bacillus is a Gram-positive, aerobic, endospore-forming, rod-shaped bacterium commonly found in the environment that have important industrial, medical, agriculture and environmental values. Here, we report the whole genome sequence analysis of UMX-103 which was isolated from a hydrocarbon contaminated site in Terengganu, Malaysia. An integration of both genomics and chemical approaches were conducted to analyse the biosurfactant production by the strain UMX-103. The genome was assembled using a combination of both de novo and reference-guided assembly methods. The genome size of UMX-103 is 4,234,627 bp with 4399 genes comprising of 4301 protein-coding genes and 98 RNA genes. The mapping results showed 93.44% of genome similarity with B. subtilis strain 168. We have identified 25 genes involved in biosurfactants production. Among the 25 identified genes, 14 genes were involved in surfactin biosynthesis and 11 genes were implicated in surfactin regulation. Fifteen genomic islands were identified which are different from other closely related Bacillus species. In addition, our study also revealed the genetic contents of this bacterium and genes which are involved in biosurfactant production.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Alvarez VM, Jurelevicius D, Marques JM, de Souza PM, de Araújo LV, Barros TG, de Souza RO, Freire DM, Seldin L (2015) Bacillus amyloliquefaciens TSBSO 3.8, a biosurfactant-producing strain with biotechnological potential for microbial enhanced oil recovery. Colloids Surf B 136:14–21

    CAS  Article  Google Scholar 

  • Banat IM (1993) The isolation of a thermophilic biosurfactant producing Bacillus sp. Biotechnol Lett 15:591–594

    CAS  Article  Google Scholar 

  • Banat IM, Makkar RS, Cameotra S (2000) Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol 53:495–508

    CAS  Article  PubMed  Google Scholar 

  • Bernheimer A, Avigad LS (1970) Nature and properties of a cytolytic agent produced by Bacillus subtilis. Microbiology 61:361–369

    CAS  Google Scholar 

  • Bodour AA, Drees KP, Maier RM (2003) Distribution of biosurfactant-producing bacteria in undisturbed and contaminated arid southwestern soils. Appl Environ Microbiol 69:3280–3287

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Boetzer M, Pirovano W (2012) Toward almost closed genomes with GapFiller. Genome Biol 13:R56

    Article  PubMed  PubMed Central  Google Scholar 

  • Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W (2011) Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 27:578–579

    CAS  Article  PubMed  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. doi:10.1093/bioinformatics/btu170

    PubMed  PubMed Central  Google Scholar 

  • Cai Q, Zhang B, Chen B, Song X, Zhu Z, Cao T (2015a) Screening of biosurfactant-producing bacteria from offshore oil and gas platforms in North Atlantic Canada. Environ Monit Assess 187:1–12

    CAS  Article  Google Scholar 

  • Cai Q, Zhang B, Chen B, Song X, Zhu Z, Cao T (2015b) Screening of biosurfactant-producing bacteria from offshore oil and gas platforms in North Atlantic Canada. Environ Monit Assess 187:1–12

    CAS  Article  Google Scholar 

  • Choudhary DK, Johri BN (2009) Interactions of Bacillus spp. and plants–with special reference to induced systemic resistance (ISR). Microbiol Res 164:493–513

    CAS  Article  PubMed  Google Scholar 

  • Cosmina P, Rodriguez F, Ferra F, Grandi G, Perego M, Venema G, Sinderen D (1993) Sequence and analysis of the genetic locus responsible for surfactin synthesis in Bacillus subtilis. Mol Microbiol 8:821–831

    CAS  Article  PubMed  Google Scholar 

  • Coutte F et al (2010) Effect of pps disruption and constitutive expression of srfA on surfactin productivity, spreading and antagonistic properties of Bacillus subtilis 168 derivatives. J Appl Microbiol 109:480–491

    CAS  PubMed  Google Scholar 

  • Darling AC, Mau B, Blattner FR, Perna NT (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14:1394–1403

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Das D, Baruah R, Roy AS, Singh AK, Boruah HPD, Kalita J, Bora TC (2015) Complete genome sequence analysis of Pseudomonas aeruginosa N002 reveals its genetic adaptation for crude oil degradation. Genomics 105:182–190

    CAS  Article  PubMed  Google Scholar 

  • Dhillon BK, Laird MR, Shay JA, Winsor GL, Lo R, Nizam F, Pereira SK, Waglechner N, McArthur AG, Langille MG et al (2015) IslandViewer 3: more flexible, interactive genomic island discovery, visualization and analysis. Nucleic Acids Res. doi:10.1093/nar/gkv401

    Google Scholar 

  • Dobrindt U, Hochhut B, Hentschel U, Hacker J (2004) Genomic islands in pathogenic and environmental microorganisms. Nat Rev Microbiol 2:414–424

    CAS  Article  PubMed  Google Scholar 

  • Doroghazi JR, Albright JC, Goering AW, Ju KS, Haines RR, Tchalukov KA, Labeda DP, Kelleher NL, Metcalf WW (2014) A roadmap for natural product discovery based on large-scale genomics and metabolomics. Nat Chem Biol 10:963–968

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Gudina EJ, Teixeira JA, Rodrigues LR (2010) Isolation and functional characterization of a biosurfactant produced by Lactobacillus paracasei. Colloids Surf B 76:298–304

    CAS  Article  Google Scholar 

  • Heerklotz H, Seelig J (2007) Leakage and lysis of lipid membranes induced by the lipopeptide surfactin. Eur Biophys J 36:305–314

    CAS  Article  PubMed  Google Scholar 

  • Huerta-Cepas J, Forslund K, Szklarczyk D, Jensen LJ, von Mering C, Bork P (2016) Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. bioRxivorg. doi:10.1101/076331

    Google Scholar 

  • Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform 11:119

    Article  Google Scholar 

  • Kamada M, Hase S, Sato K, Toyoda A, Fujiyama A, Sakakibara Y (2014) Whole genome complete resequencing of Bacillus subtilis natto by combining long reads with high-quality short reads. PLoS ONE 9:e109999

    Article  PubMed  PubMed Central  Google Scholar 

  • Karataş H, Uyar F, Tolan V, Baysal Z (2013) Optimization and enhanced production of α-amylase and protease by a newly isolated Bacillus licheniformis ZB-05 under solid-state fermentation. Ann Microbiol 63:45–52

    Article  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol. doi:10.1093/molbev/msw054

    PubMed Central  Google Scholar 

  • Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni G, Azevedo V, Bertero MG, Bessières P, Bolotin A, Borchert S et al (1997) The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390:249–256

    CAS  Article  PubMed  Google Scholar 

  • Lagesen K, Hallin P, Rødland EA, Stærfeldt H-H, Rognes T, Ussery DW (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Langille MG, Hsiao WW, Brinkman FS (2010) Detecting genomic islands using bioinformatics approaches. Nat Rev Microbiol 8:373–382

    CAS  Article  PubMed  Google Scholar 

  • Larsen MV, Cosentino S, Rasmussen S, Friis C, Hasman H, Marvig RL, Jelsbak L, Sicheritz-Pontén T, Ussery DW, Aarestrup FM et al (2012) Multilocus sequence typing of total genome sequenced bacteria. J Clin Microbiol. doi:10.1128/JCM.06094-11

    Google Scholar 

  • Lasken RS, McLean JS (2014) Recent advances in genomic DNA sequencing of microbial species from single cells. Nat Rev Genet 15:577–584

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Li H (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv preprint arXiv:13033997

  • Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:0955–0964

    CAS  Article  Google Scholar 

  • Marahier M, Nakano M, Zuber P (1993) Regulation of peptide antibiotic production in Bacillus. Mol Microbiol 7:631–636

    Article  Google Scholar 

  • May JJ, Wendrich TM, Marahiel MA (2001) The dhb operon of Bacillus subtilisEncodes the biosynthetic template for the catecholic siderophore 2,3-dihydroxybenzoate-glycine-threonine trimeric ester Bacillibactin. J Biol Chem 276:7209–7217

    CAS  Article  PubMed  Google Scholar 

  • Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:1

    Article  Google Scholar 

  • Morán AC, Martinez MA, Siñeriz F (2002) Quantification of surfactin in culture supernatants by hemolytic activity. Biotechnol Lett 24:177–180

    Article  Google Scholar 

  • Morikawa M, Daido H, Takao T, Murata S, Shimonishi Y, Imanaka T (1993) A new lipopeptide biosurfactant produced by Arthrobacter sp. strain MIS38. J Bacteriol 175:6459–6466

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Morikawa M, Hirata Y, Imanaka T (2000) A study on the structure–function relationship of lipopeptide biosurfactants. Biochim Biophys Acta 1488:211–218

    CAS  Article  PubMed  Google Scholar 

  • Mulligan CN (2009) Recent advances in the environmental applications of biosurfactants. Curr Opin Interface Sci 14:372–378

    CAS  Article  Google Scholar 

  • Mulligan CN, Cooper DG, Neufeld RJ (1984) Selection of microbes producing biosurfactants in media without hydrocarbons. J Ferment Technol 62:311–314

    CAS  Google Scholar 

  • Nakano M, Magnuson R, Myers A, Curry J, Grossman A, Zuber P (1991) srfA is an operon required for surfactin production, competence development, and efficient sporulation in Bacillus subtilis. J Bacteriol 173:1770–1778

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Nakano MM, Corbell N, Besson J, Zuber P (1992) Isolation and characterization of sfp: a gene that functions in the production of the lipopeptide biosurfactant, surfactin, in Bacillus subtilis. Mol Gen Genet 232:313–321

    CAS  PubMed  Google Scholar 

  • Nishito Y, Osana Y, Hachiya T, Popendorf K, Toyoda A, Fujiyama A, Itaya M, Sakakibara Y (2010) Whole genome assembly of a natto production strain Bacillus subtilis natto from very short read data. BMC Genom 11:1

    Article  Google Scholar 

  • Nitschke M, Costa S (2007) Biosurfactants in food industry. Trends Food Sci Technol 18:252–259

    CAS  Article  Google Scholar 

  • Pereira JF, Gudiña EJ, Costa R, Vitorino R, Teixeira JA, Coutinho JA, Rodrigues LR (2013) Optimization and characterization of biosurfactant production by Bacillus subtilis isolates towards microbial enhanced oil recovery applications. Fuel 111:259–268

    CAS  Article  Google Scholar 

  • Peypoux F, Bonmatin J, Wallach J (1999) Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol 51:553–563

    CAS  Article  PubMed  Google Scholar 

  • Płaza G, Chojniak J, Rudnicka K, Paraszkiewicz K, Bernat P (2015a) Detection of biosurfactants in Bacillus species: genes and products identification. J Appl Microbiol 119:1023–1034

    Article  PubMed  Google Scholar 

  • Płaza G, Chojniak J, Rudnicka K, Paraszkiewicz K, Bernat P (2015b) Detection of biosurfactants in Bacillus species: genes and products identification. J Appl Microbiol 119:1023–1034

    Article  PubMed  Google Scholar 

  • Rissman AI, Mau B, Biehl BS, Darling AE, Glasner JD, Perna NT (2009) Reordering contigs of draft genomes using the Mauve aligner. Bioinformatics 25:2071–2073

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Sari M, Kusharyoto W, Artika IM (2014) Screening for biosurfactant-producing yeast: confirmation of biosurfactant production. Biotechnology 13:106

    Article  Google Scholar 

  • Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics. doi:10.1093/bioinformatics/btu153

    PubMed Central  Google Scholar 

  • Shaligram S, Kumbhare SV, Dhotre DP, Muddeshwar MG, Kapley A, Joseph N, Purohit HP, Shouche YS, Pawar SP (2016) Genomic and functional features of the biosurfactant producing Bacillus sp. AM13. Funct Integr Genom 16:557–566

    CAS  Article  Google Scholar 

  • Shoeb E, Ahmed N, Akhter J, Badar U, Siddiqui K, Ansari FA, Waqar M, Imtiaz S, Akhtar N, Shaikh QA et al (2015) Screening and characterization of biosurfactant-producing bacteria isolated from the Arabian Sea coast of Karachi. Turk J Biol 39:210–216

    CAS  Article  Google Scholar 

  • Vaz DA, Gudiña EJ, Alameda EJ, Teixeira JA, Rodrigues LR (2012) Performance of a biosurfactant produced by a Bacillus subtilis strain isolated from crude oil samples as compared to commercial chemical. Colloids Surf B 89:167–174

    CAS  Article  Google Scholar 

  • Yonebayashi H, Yoshida S, Ono K, Enomoto H (2000) Screening of microorganisms for microbial enhanced oil recovery processes. Sekiyu Gakkai Shi 43:59–69

    CAS  Article  Google Scholar 

  • Youssef NH, Duncan KE, Nagle DP, Savage KN, Knapp RM, McInerney MJ (2004) Comparison of methods to detect biosurfactant production by diverse microorganisms. J Microbiol Methods 56:339–347

    CAS  Article  PubMed  Google Scholar 

  • Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Chiodini R, Badr A, Zhang G (2011) The impact of next-generation sequencing on genomics. J Genet Genom 38:95–109

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded under University of Malaya Research Grant (UMRG: RG353-15AFR) and Postgraduate Research Grant (PG195-2016A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Feisal Merican.

Ethics declarations

Conflict of interest

YAA, TM, SM and AFM declare that there is no conflict of interest.

Ethical approval

The article does not contain any studies with human participants performed by any of the authors.

Additional information

Data accessibility: The complete genome sequences are deposited at DDBJ/EMBL/GenBank under the accession number BDCV01000000.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abdelhafiz, Y.A., Manaharan, T., Mohamad, S.B. et al. Whole genome sequencing and functional features of UMX-103: a new Bacillus strain with biosurfactant producing capability. Genes Genom 39, 877–886 (2017). https://doi.org/10.1007/s13258-017-0550-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-017-0550-7

Keyword

  • Bacillus UMX-103
  • De novo assembly
  • Gene annotation
  • Biosurfactant genes
  • Genomic islands
  • Next generation sequencing