Genes & Genomics

, Volume 39, Issue 3, pp 301–306 | Cite as

Whole-exome sequencing identifies two novel missense mutations (p.L111P and p.R3048C) of RYR3 in a Vietnamese patient with autism spectrum disorders

  • Thu Hien Nguyen
  • Thi Thanh Ngan Nguyen
  • Bac Viet Le
  • Ngoc Minh Thanh
  • Thi Kim Lien Nguyen
  • Van Hai Nong
  • Huy Hoang Nguyen
Research Article


Autism spectrum disorders (ASDs) are a group of neurodevelopmental disorders characterized by ritualistic-repetitive behaviors and impaired verbal and non-verbal communication. Boys are more likely to be diagnosed with ASD than girls. Genetics have been shown to play a key role in the etiology of autism. Many genes were found to be implicated in the inheritance of idiopathic autism. Analysis of mutation abnormalities associated with autism contributes significantly to the identification of autism candidate genes. Whole-exome sequencing has been shown as an application of the next generation sequencing technology used to determine the variations of all coding regions, or exons of the known genes. In the present study, we have found two novel heterozygous missense mutations (p.L111P and p.R3048C) on the RYR3 gene, which was located in the autism susceptibility region (15q14-q15) in a 9-year-old boy with ASD. Therefore, the sequence missense mutations provide the first suggestive link between a genetic abnormality in the RYR3 gene and a neurodevelopmental disorder.


Autistic spectrum disorder Autism Ca2+ channel RYR3 gene Whole-exome sequencing 

Supplementary material

13258_2016_495_MOESM1_ESM.doc (501 kb)
Supplementary material 1 (DOC 501 kb)


  1. Ashley-Koch AE, Mei H, Jaworski J, Ma DQ, Ritchie MD, Menold MM, Delong GR, Abramson RK, Wright HH, Hussman JP et al (2006) An analysis paradigm for investigating multi-locus effects in complex disease: examination of three GABA receptor subunit genes on 15q11-q13 as risk factors for autistic disorder. Ann Hum Genet 70:281–292CrossRefPubMedGoogle Scholar
  2. Association AP (2000) Diagnostic and statistical manual of mental disorders: DSM-IV-TR, 4th edn. American Psychiatric Association, Washington, DCGoogle Scholar
  3. Chahrour MH, Yu TW, Lim ET, Ataman B, Coulter ME, Hill RS, Stevens CR, Schubert CR, Collaboration AAS, Greenberg ME et al (2012) Whole-exome sequencing and homozygosity analysis implicate depolarization-regulated neuronal genes in autism. PLoS Genet 8:e1002635CrossRefPubMedPubMedCentralGoogle Scholar
  4. Fill M, Copello JA (2002) Ryanodine receptor calcium release channels. Physiol Rev 82:893–922CrossRefPubMedGoogle Scholar
  5. Freitag CM (2007) The genetics of autistic disorders and its clinical relevance: a review of the literature. Mol Psychiatry 12:2–22CrossRefPubMedGoogle Scholar
  6. Gargus JJ (2009) Genetic calcium signaling abnormalities in the central nervous system: seizures, migraine, and autism. Ann NY Acad Sci 1151:133–156CrossRefPubMedGoogle Scholar
  7. Goldani AA, Downs SR, Widjaja F, Lawton B, Hendren RL (2014) Biomarkers in autism. Front Psychiatry 5:100CrossRefPubMedPubMedCentralGoogle Scholar
  8. Grabrucker AM (2013) Environmental factors in autism. Front Psychiatry 3:118CrossRefPubMedPubMedCentralGoogle Scholar
  9. Hakamata Y, Nakai J, Takeshima H, Imoto K (1992) Primary structure and distribution of a novel ryanodine receptor/calcium release channel from rabbit brain. FEBS Lett 312:229–235CrossRefPubMedGoogle Scholar
  10. Hedges DJ, Burges D, Powell E, Almonte C, Huang J, Young S, Boese B, Schmidt M, Pericak-Vance MA, Martin E et al (2009) Exome sequencing of a multigenerational human pedigree. PLoS ONE 4:e8232CrossRefPubMedPubMedCentralGoogle Scholar
  11. Helsmoortel C, Swagemakers SM, Vandeweyer G, Stubbs AP, Palli I, Mortier G, Kooy RF, van der Spek PJ (2016) Whole genome sequencing of a dizygotic twin suggests a role for the serotonin receptor HTR7 in autism spectrum disorder. Am J Med Genet Part B. doi:10.1002/ajmg.b.32473 PubMedGoogle Scholar
  12. Heyes S, Pratt WS, Rees E, Dahimene S, Ferron L, Owen MJ, Dolphin AC (2015) Genetic disruption of voltage-gated calcium channels in psychiatric and neurological disorders. Prog Neurobiol 134:36–54CrossRefPubMedPubMedCentralGoogle Scholar
  13. Kouzu Y, Moriya T, Takeshima H, Yoshioka T, Shibata S (2000) Mutant mice lacking ryanodine receptor type 3 exhibit deficits of contextual fear conditioning and activation of calcium/calmodulin-dependent protein kinase II in the hippocampus. Mol Brain Res 76:142–150CrossRefPubMedGoogle Scholar
  14. Krey JF, Dolmetsch RE (2007) Molecular mechanisms of autism: a possible role for Ca2+ signaling. Curr Opin Neurobiol 17:112–119CrossRefPubMedGoogle Scholar
  15. Kuhlenbaumer G, Hullmann J, Appenzeller S (2011) Novel genomic techniques open new avenues in the analysis of monogenic disorders. Hum Mutat 32:144–151CrossRefPubMedGoogle Scholar
  16. Lai FA, Dent M, Wickenden C, Xu L, Kumari G, Misra M, Lee HB, Sar M, Meissner G (1992) Expression of a cardiac Ca2+-release channel isoform in mammalian brain. Biochem J 288:553–564CrossRefPubMedPubMedCentralGoogle Scholar
  17. Lajtha A, Guido TGG (2009) Handbook of neurochemistry and molecular neurobiology, 3rd edn. Springer, BerlinCrossRefGoogle Scholar
  18. Lanner JT, Georgiou DK, Joshi AD, Hamilton SL (2010) Ryanodine receptors: structure, expression, molecular details, and function in calcium release. Cold Spring Harb Perspect Biol 2:a003996CrossRefPubMedPubMedCentralGoogle Scholar
  19. Lu AT, Dai X, Martinez-Agosto JA, Cantor RM (2012) Support for calcium channel gene defects in autism spectrum disorders. Mol Autism 3:p18CrossRefGoogle Scholar
  20. Matsuo N, Tanda K, Nakanishi K, Yamasaki N, Toyama K, Takao K, Takeshima H, Miyakawa T (2009) Comprehensive behavioral phenotyping of ryanodine receptor type 3 (RyR3) knockout mice: decreased social contact duration in two social interaction tests. Front Behav Neurosci 3:3PubMedPubMedCentralGoogle Scholar
  21. Morrow EM, Yoo SY, Flavell SW, Kim TK, Lin Y, Hill RS, Mukaddes NM, Balkhy S, Gascon G, Hashmi A et al (2008) Identifying autism loci and genes by tracing recent shared ancestry. Science 321:218–223CrossRefPubMedPubMedCentralGoogle Scholar
  22. Nakashima Y, Nishimura S, Maeda A, Barsoumian EL, Hakamata Y, Nakai J, Allen PD, Imoto K, Kita T (1997) Molecular cloning and characterization of a human brain ryanodine receptor. FEBS Lett 417:157–162CrossRefPubMedGoogle Scholar
  23. Ng SB, Buckingham KJ, Lee C, Bigham AW, Tabor HK, Dent KM, Huff CD, Shannon PT, Jabs EW, Nickerson DA et al (2010) Exome sequencing identifies the cause of a mendelian disorder. Nat Genet 42:30–35CrossRefPubMedGoogle Scholar
  24. Peters SU, Beaudet AL, Madduri N, Bacino CA (2004) Autism in Angelman syndrome: implications for autism research. Clin Genet 66:530–536CrossRefPubMedGoogle Scholar
  25. Roussel BD, Kruppa AJ, Miranda E, Crowther DC, Lomas DA, Marciniak SJ (2013) Endoplasmic reticulum dysfunction in neurological disease. Lancet Neurol 12:105–118CrossRefPubMedGoogle Scholar
  26. Schmunk G, Boubion BJ, Smith IF, Parker I, Gargus JJ (2015) Shared functional defect in IP(3)R-mediated calcium signaling in diverse monogenic autism syndromes. Transl Psychiatry 5:e643CrossRefPubMedPubMedCentralGoogle Scholar
  27. Schreiber M, Dorschner M, Tsuang D (2013) Next-generation sequencing in schizophrenia and other neuropsychiatric disorders. Am J Med Genet Part B 162B:671–678CrossRefPubMedGoogle Scholar
  28. Sener EF, Canatan H, Ozkul Y (2016) Recent advances in autism spectrum disorders: applications of whole exome sequencing technology. Psychiatry Investig 13:255–264CrossRefPubMedPubMedCentralGoogle Scholar
  29. Sorrentino V, Giannini G, Malzac P, Mattei MG (1993) Localization of a novel ryanodine receptor gene (RYR3) to human chromosome 15q14-q15 by in situ hybridization. Genomics 18:163–175CrossRefPubMedGoogle Scholar
  30. Splawski I, Timothy KW, Sharpe LM, Decher N, Kumar P, Bloise R, Napolitano C, Schwartz PJ, Joseph RM, Condouris K et al (2004) Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 119:19–31CrossRefPubMedGoogle Scholar
  31. Takeshima H, Yamazawa T, Ikemoto T, Takekura H, Nishi M, Noda T, Iino M (1995) Ca(2+)-induced Ca2+ release in myocytes from dyspedic mice lacking the type-1 ryanodine receptor. EMBO J 14:2999–3006PubMedPubMedCentralGoogle Scholar
  32. Weinreb NJ (2013) Oral small molecule therapy for lysosomal storage diseases. Pediatr Endocrinol Rev 11:77–90PubMedGoogle Scholar
  33. Zhao C, Ikeda S, Arai T, Naka-Mieno M, Sato N, Muramatsu M, Sawabe M (2014) Association of the RYR3 gene polymorphisms with atherosclerosis in elderly Japanese population. BMC Cardiovasc Disord 14:6CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Genetics Society of Korea and Springer-Science and Media 2016

Authors and Affiliations

  • Thu Hien Nguyen
    • 1
  • Thi Thanh Ngan Nguyen
    • 1
  • Bac Viet Le
    • 1
  • Ngoc Minh Thanh
    • 2
  • Thi Kim Lien Nguyen
    • 1
  • Van Hai Nong
    • 1
  • Huy Hoang Nguyen
    • 1
  1. 1.Institute of Genome ResearchVietnam Academy of Science and Technology (VAST)HanoiVietnam
  2. 2.National Hospital of PediatricsHanoiVietnam

Personalised recommendations