Skip to main content
Log in

Metabolomics and mitochondrial dysfunction in Alzheimer’s disease

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is characterized by cognitive impairment, progressive neurodegeneration, and Aβ accumulation. Aβ oligomers can lead to synaptic damage via alterations in glutamate receptors and excitotoxicity, as well as mitochondrial dysfunction. AD is associated with various biological indicators, including (1) predisposing factors such as genetic risk factors, (2) laboratory markers such as Aβ and tau protein, and (3) diagnostic markers such as MRI and PET findings. However, these markers are not confirmed, invasive, or expensive. In the present study, we employed nuclear magnetic resonance (NMR) methods that are inexpensive, time-efficient, and can be performed using samples obtained from various easily accessible sources such as cerebrospinal fluid, plasma, and peripheral tissue, thus highlighting the clinical utility of this approach. NMR analyses of blood metabolites showed that glutamine, glutamate, leucine, oxaloacetate, aspartate, isoleucine, and 3-hydroxyisovalerate are increased in patients with AD compared with control individuals. These metabolites seem to be related to mitochondrial dysfunction. Our data indicated that 3-hydroxyisovalerate, which is linked to known pathologic processes associated with mitochondrial dysfunction and accelerated neurodegeneration, was increased in the blood samples of patients with AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • American Psychiatric Association (2000) Diagnostic and statistical manual of mental disorders DSM-IV-TR fourth edition (text revision)

  • Antuono PG, Jones JL, Wang Y, Li S-J (2001) Decreased glutamate+ glutamine in Alzheimer’s disease detected in vivo with 1H-MRS at 0.5 T. Neurology 56:737–742

    Article  CAS  PubMed  Google Scholar 

  • Atlante A, Calissano P, Bobba A, Giannattasio S, Marra E, Passarella S (2001) Glutamate neurotoxicity, oxidative stress and mitochondria. FEBS Lett 497:1–5

    Article  CAS  PubMed  Google Scholar 

  • Beal MF (1998) Mitochondrial dysfunction in neurodegenerative diseases. BBA Bioenerg 1366:211–223

    Article  CAS  Google Scholar 

  • Blass JP (2001) Brain metabolism and brain disease: is metabolic deficiency the proximate cause of Alzheimer dementia? J Neurosci Res 66:851–856

    Article  CAS  PubMed  Google Scholar 

  • Blennow K, Hampel H, Weiner M, Zetterberg H (2010) Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat Rev Neurol 6:131–144

    Article  CAS  PubMed  Google Scholar 

  • Butterfield DA, Drake J, Pocernich C, Castegna A (2001) Evidence of oxidative damage in Alzheimer’s disease brain: central role for amyloid β-peptide. Trends Mol Med 7:548–554

    Article  CAS  PubMed  Google Scholar 

  • Calvetti D, Somersalo E (2013) Quantitative in silico analysis of neurotransmitter pathways under steady state conditions. Front Endocrinol 4:137

    Article  Google Scholar 

  • Chen J, Herrup K (2012) Glutamine acts as a neuroprotectant against DNA damage, beta-amyloid and H2O2-induced stress. PLoS ONE 7:e33177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collino S, Martin FPJ, Rezzi S (2013) Clinical metabolomics paves the way towards future healthcare strategies. Br J Clin Pharmacol 75:619–629

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coskun PE, Beal MF, Wallace DC (2004) Alzheimer’s brains harbor somatic mtDNA control-region mutations that suppress mitochondrial transcription and replication. Proc Natl Acad Sci USA 101:10726–10731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forlenza OV, Diniz BS, Gattaz WF (2010) Diagnosis and biomarkers of predementia in Alzheimer’s disease. BMC Med 8:1

    Article  Google Scholar 

  • Fukui M, Song J-H, Choi J, Choi HJ, Zhu BT (2009) Mechanism of glutamate-induced neurotoxicity in HT22 mouse hippocampal cells. Eur J Pharmacol 617:1–11

    Article  CAS  PubMed  Google Scholar 

  • Gebregiworgis T, Nielsen HH, Massilamany C, Gangaplara A, Reddy J, Illes Z, Powers R (2016) A urinary metabolic signature for multiple sclerosis and neuromyelitis optica. J Proteom Res 15:659–666

    Article  CAS  Google Scholar 

  • Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    Article  CAS  PubMed  Google Scholar 

  • Hattori N, Abe K, Sakoda S, Sawada T (2002) Proton MR spectroscopic study at 3 Tesla on glutamate/glutamine in Alzheimer’s disease. Neuroreport 13:183–186

    Article  CAS  PubMed  Google Scholar 

  • Hirai K, Aliev G, Nunomura A, Fujioka H, Russell RL, Atwood CS, Johnson AB, Kress Y, Vinters HV, Tabaton M (2001) Mitochondrial abnormalities in Alzheimer’s disease. J Neurosci 21:3017–3023

    CAS  PubMed  Google Scholar 

  • Keller JN, Guo Q, Holtsberg F, Bruce-Keller A, Mattson MP (1998) Increased sensitivity to mitochondrial toxin-induced apoptosis in neural cells expressing mutant presenilin-1 is linked to perturbed calcium homeostasis and enhanced oxyradical production. J Neurosci 18:4439–4450

    CAS  PubMed  Google Scholar 

  • Kim KC, Lee SG, Kim JA, Choi EJ, Kim W (2015) The prevalence of an interrupted poly-C tract variant harboring mitochondrial DNA haplogroup B and its association with reduced susceptibility to type 2 diabetes in Korea. Genes Genom 37:939–944

    Article  CAS  Google Scholar 

  • Knight WD, Okello AA, Ryan NS, Turkheimer FE, de Llano SRM, Edison P, Douglas J, Fox NC, Brooks DJ, Rossor MN (2011) Carbon-11-pittsburgh compound B positron emission tomography imaging of amyloid deposition in presenilin 1 mutation carriers. Brain 134:293–300

    Article  PubMed  Google Scholar 

  • Lashuel HA, Hartley D, Petre BM, Walz T, Lansbury PT (2002) Neurodegenerative disease: amyloid pores from pathogenic mutations. Nature 418:291

    Article  CAS  PubMed  Google Scholar 

  • Leipnitz G, Seminotti B, Amaral AU, de Bortoli G, Solano A, Schuck PF, Wyse ÂT, Wannmacher CM, Latini A, Wajner M (2008) Induction of oxidative stress by the metabolites accumulating in 3-methylglutaconic aciduria in cerebral cortex of young rats. Life Sci 82:652–662

    Article  CAS  PubMed  Google Scholar 

  • Lin MT, Simon DK, Ahn CH, Kim LM, Beal MF (2002) High aggregate burden of somatic mtDNA point mutations in aging and Alzheimer’s disease brain. Hum Mol Genet 11:133–145

    Article  CAS  PubMed  Google Scholar 

  • Lin AP, Shic F, Enriquez C, Ross BD (2003) Reduced glutamate neurotransmission in patients with Alzheimer’s disease—an in vivo 13C magnetic resonance spectroscopy study. Magn Reson Mater Phys Biol Med 16:29–42

    Article  CAS  Google Scholar 

  • Liu JC, Koppula S, Huh SJ, Park PJ, Kim CG, Lee CJ, Kim CG (2015) Necrosis inhibitor-5 (NecroX-5), attenuates MPTP-induced motor deficits in a zebrafish model of Parkinson’s disease. Genes Genom 37:1073–1079

    Article  CAS  Google Scholar 

  • Manczak M, Park BS, Jung Y, Reddy PH (2004) Differential expression of oxidative phosphorylation genes in patients with Alzheimer’s disease. Neuromol Med 5:147–162

    Article  CAS  Google Scholar 

  • Moreira PI, Carvalho C, Zhu X, Smith MA, Perry G (2010) Mitochondrial dysfunction is a trigger of Alzheimer’s disease pathophysiology. Biochim Biophys Acta Mol Basis Dis 1802:2–10

    Article  CAS  Google Scholar 

  • Naj AC, Jun G, Beecham GW, Wang L-S, Vardarajan BN, Buros J, Gallins PJ, Buxbaum JD, Jarvik GP, Crane PK (2011) Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet 43:436–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura T, Lipton SA (2009) Cell death: protein misfolding and neurodegenerative diseases. Apoptosis 14:455–468

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Lipton SA (2010) Redox regulation of mitochondrial fission, protein misfolding, synaptic damage, and neuronal cell death: potential implications for Alzheimer’s and Parkinson’s diseases. Apoptosis 15:1354–1363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neugroschl J, Davis KL (2002) Biological markers in Alzheimer disease. Am J Geriatr Psychiatry 10:660–677

    Article  PubMed  Google Scholar 

  • Nixon RA, Cataldo AM (2006) Lysosomal system pathways: genes to neurodegeneration in Alzheimer’s disease. J Alzheimers Dis 9:277–289

    CAS  PubMed  Google Scholar 

  • Olanow C (1992) An introduction to the free radical hypothesis in Parkinson’s disease. Ann Neurol 32:S2–S9

    Article  CAS  PubMed  Google Scholar 

  • Reddy PH, Beal MF (2008) Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer’s disease. Trends Mol Med 14:45–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson SR (2000) Neuronal expression of glutamine synthetase in Alzheimer’s disease indicates a profound impairment of metabolic interactions with astrocytes. Neurochem Int 36:471–482

    Article  CAS  PubMed  Google Scholar 

  • Shank R, Aprison M (1981) Present status and significance of the glutamine cycle in neural tissues. Life Sci 28:837–842

    Article  CAS  PubMed  Google Scholar 

  • Shankar GM, Bloodgood BL, Townsend M, Walsh DM, Selkoe DJ, Sabatini BL (2007) Natural oligomers of the Alzheimer amyloid-β protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J Neurosci 27:2866–2875

    Article  CAS  PubMed  Google Scholar 

  • Smith MA, Nunomura A, Zhu X, Takeda A, Perry G (2000) Metabolic, metallic, and mitotic sources of oxidative stress in Alzheimer disease. Antioxid Redox Signal 2:413–420

    Article  CAS  PubMed  Google Scholar 

  • Van Cauwenberghe C, Van Broeckhoven C, Sleegers K (2015) The genetic landscape of Alzheimer disease: clinical implications and perspectives. Genet Med 18:421–430

    Article  PubMed  PubMed Central  Google Scholar 

  • Wallace DC (1999) Mitochondrial diseases in man and mouse. Science 283:1482–1488

    Article  CAS  PubMed  Google Scholar 

  • Zhang A, Sun H, Wang P, Han Y, Wang X (2012) Modern analytical techniques in metabolomics analysis. Analyst 137:293–300

    Article  CAS  PubMed  Google Scholar 

  • Zhu W, Zeng N, Wang N (2010) Sensitivity, specificity, accuracy, associated confidence interval and ROC analysis with practical SAS® implementations. NESUG proceedings: health care and life sciences, Baltimore, pp 1–9

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heui-Soo Kim.

Ethics declarations

Conflict of interest

DHK declares that he has no conflict of interest. J-AG declares that he has no conflict of interest. DY declares that she has no conflict of interest. SK declares that he has no conflict of interest. H-SK declares that he has no conflict of interest.

Ethical approval

This study was performed in accordance with South Korea laws and the guidelines of the Ethics Committee at the Woosan Medical Foundation.

Additional information

Dong Hee Kim, Jeong-An Gim and Dahye Yoon have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D.H., Gim, JA., Yoon, D. et al. Metabolomics and mitochondrial dysfunction in Alzheimer’s disease. Genes Genom 39, 295–300 (2017). https://doi.org/10.1007/s13258-016-0494-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-016-0494-3

Keywords

Navigation