Skip to main content
Log in

Genome-wide analysis and environmental response profiling of dirigent family genes in rice (Oryza sativa)

  • Original Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Dirigent (DIR) and DIR-like family genes were involved in lignification or in the response to pathogen infection and abiotic stress in plants. Little is known to us about how rice DIR genes respond to adverse conditions. In this study, we reported genome-wide analysis of 49 DIR or DIR-likes genes in rice. The 49 OsDIRs or OsDIR-likes were tandem arranged into ten clusters. The phylogenetic analysis indicated that the 49 rice DIR and DIR-like genes cluster into five distinct subfamilies, DIR-a and four DIR-like subfamilies (DIR-b/d, and DIR-g, DIR-c, DIR-e). Meta-analysis of microarray gene expression datas indicated that all the OsDIRs or OsDIR-likes were expressed almost at the same level but with different patterns: most OsDIRs or OsDIR-likes were expressed exclusively in stigma and ovary and were induced by IAA and BAP; several genes were induced by trans-zeatin (tZ) and DMSO; 23 OsDIRs or OsDIR-likes were responded to abiotic stress. Our analysis also showed that most of these genes could respond to abiotic stresses, which contained cis-regulatory elements. The present study will provide a useful reference for further functional analysis of the DIR genes in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arasan SKT, Park JI, Ahmed NU, Jung HJ, Hur Y, Kang KK, Lim Y, Nou IS (2013) Characterization and expression analysis of dirigent family genes related to stresses in Brassica. Plant Physiol Biochem 67:144–153

    Article  Google Scholar 

  • Argueso CT, Ferreira FJ, Kieber JJ (2009) Environmental perception avenues: the interaction of cytokinin and environmental response pathways. Plant, Cell Environ 32:1147–1160

    Article  CAS  Google Scholar 

  • Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 66:3523–3543

    Article  Google Scholar 

  • Bateman B, Coin L, Durbin R, Finn R, Hollich V (2004) The Pfam protein families database. Nucleic Acids Res 32(suppl 1):D138–D141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bochenek B, Hirsch AM (1990) In-situ hybridization of nodulin mRNAs in root nodules using non-radioactive probes. Plant Mol Biol Rep 8:237–248

    Article  CAS  Google Scholar 

  • Boudet AM (2000) Lignins and lignification: selected issues. Plant Physiol Biochem 38:81–96

    Article  CAS  Google Scholar 

  • Burlat V, Kwon M, Davin LB, Lewis NG (2001) Dirigent proteins and dirigent sites in lignifying tissues. Phytochemistry 57:883–897

    Article  CAS  PubMed  Google Scholar 

  • Cao X, Liao Y, Rong S, Hu C, Zhang X, Chen R, Xu Z, Gao X, Li L, Zhu J (2016) Identification and characterization of a novel abiotic stress responsive sulphotransferase gene (OsSOT9) from rice. Biotechnol Biotechnol Equip 30:227–235

    Article  CAS  Google Scholar 

  • Davin LB, Lewis NG (2000) Dirigent proteins and dirigent sites explain the mystery of specificity of radical precursor coupling in lignan and lignin biosynthesis. Plant Physiol 123:453–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davin LB, Lewis NG (2005) Dirigent phenoxy radical coupling: advances and challenges. Curr Opin Biotechnol 16:517–524

    Google Scholar 

  • Davin LB, Wang HB, Crowell AL, Bedgar DL, Martin DM, Sarkanen S, Lewis NG (1997) Stereoselective bimolecular phenoxy radical coupling by an auxiliary (dirigent) protein without an active center. Science 275:362–367

    Article  CAS  PubMed  Google Scholar 

  • Donaldson L (1994) Mechanical constraints on lignin deposition during lignification. Wood Sci Technol 28:111–118

    Article  CAS  Google Scholar 

  • Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151:1531–1545

    CAS  PubMed  PubMed Central  Google Scholar 

  • Franke R, Hemm MR, Denault JW, Ruegger MO, Humphreys JM, Chapple C (2002) Changes in secondary metabolism and deposition of an unusual lignin in the ref8 mutant of Arabidopsis. Plant J 30:47–59

    Article  CAS  PubMed  Google Scholar 

  • Freeling M (2009) Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition. Annu Rev Plant Biol 60:433–453

    Article  CAS  PubMed  Google Scholar 

  • Fristensky B, Riggleman RC, Wagoner W, Hadwiger L (1985) Gene expression in susceptible and disease resistant interactions of peas induced with Fusarium solani pathogens and chitosan. Physiol Mol Plant Pathol 27:15–28

    Article  CAS  Google Scholar 

  • Gang DR, Costa MA, Fujita M, Dinkova-Kostova AT, Wang HB, Burlat V, Martin W, Sarkanen S, Davin LB, Lewis NG (1999) Regiochemical control of monolignol radical coupling: a new paradigm for lignin and lignan biosynthesis. Chem Biol 6:143–151

    Article  CAS  PubMed  Google Scholar 

  • Görlach J, Volrath S, Knauf-Beiter G, Hengy G, Beckhove U, Kogel KH, Oostendorp M, Staub T, Ward E, Kessmann H (1996) Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. Plant Cell 8:629–643

    Article  PubMed  PubMed Central  Google Scholar 

  • Hosmani PS, Kamiya T, Danku J, Naseer S, Geldner N, Guerinot ML, Salt DE (2013) Dirigent domain-containing protein is part of the machinery required for formation of the lignin-based Casparian strip in the root. Proc Natl Acad Sci 110:14498–14503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingram J, Bartels D (2003) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Biol 47:377–403

    Article  Google Scholar 

  • Jiang SY, González JM, Ramachandran S (2013) Comparative genomic and transcriptomic analysis of tandemly and segmentally duplicated genes in rice. PLoS ONE 8:e63551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin-long G, Li-ping X, Jing-ping F, Ya-chun S, Hua-ying F, You-xiong Q, Jing-sheng X (2012) A novel dirigent protein gene with highly stem-specific expression from sugarcane, response to drought, salt and oxidative stresses. Plant Cell Rep 31:1801–1812

    Article  PubMed  Google Scholar 

  • Kim MK, Jeon JH, Davin LB, Lewis NG (2002a) Monolignol radical–radical coupling networks in western red cedar and Arabidopsis and their evolutionary implications. Phytochemistry 61:311–322

    Article  CAS  PubMed  Google Scholar 

  • Kim MK, Jeon JH, Fujita M, Davin LB, Lewis NG (2002b) The western red cedar (Thuja plicata) 8–8′ DIRIGENT family displays diverse expression patterns and conserved monolignol coupling specificity. Plant Mol Biol 49:199–214

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Asif MH, Chakrabarty D, Tripathi RD, Dubey RS, Trivedi PK (2013) Differential expression of rice lambda class GST gene family members during plant growth, development, and in response to stress conditions. Plant Mol Biol Rep 31:569–580

    Article  CAS  Google Scholar 

  • Lee J, Parthier B, Löbler M (1996) Jasmonate signalling can be uncoupled from abscisic acid signalling in barley: identification of jasmonate-regulated transcripts which are not induced by abscisic acid. Planta 199:625–632

    Article  CAS  PubMed  Google Scholar 

  • Lewis NG, Davin LB (1999) Lignans: biosynthesis and function. Compr nat prod chem 1:639–712. doi: 10.1016/B978-0-08-091283-7.00027-8

    Google Scholar 

  • Li Q, Chen J, Xiao Y, Di P, Zhang L, Chen W (2014) The dirigent multigene family in Isatis indigotica: gene discovery and differential transcript abundance. BMC Genom 15(1):1–13

    Article  Google Scholar 

  • Liu S, Cao X, Liao Y, Chen R, Xu Z, Gao X, Li L, Zhu J (2015) Identification and characterization of a novel abiotic stress responsive ATPase gene from rice. Plant Omics 8(2):169–177

    Google Scholar 

  • Matsuda S, Funabiki A, Furukawa K, Komori N, Koike M, Tokuji Y, Takamure I, Kato K (2012) Genome-wide analysis and expression profiling of half-size ABC protein subgroup G in rice in response to abiotic stress and phytohormone treatments. Mol Genet Genom 287:819–835

    Article  CAS  Google Scholar 

  • McClure BA, Guilfoyle TJ (1989) Tissue print hybridization. A simple technique for detecting organ-and tissue-specific gene expression. Plant Mol Biol 12:517–524

    Article  CAS  PubMed  Google Scholar 

  • Messing SA, Gabelli SB, Echeverria I, Vogel JT, Guan JC, Tan BC, Klee HJ, Mccarty DR, Amzel LM (2010) Structural insights into maize viviparous14, a key enzyme in the biosynthesis of the phytohormone abscisic acid. Plant Cell 22:2970–2980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgenstern B, Frech K, Dress A, Werner T (1998) DIALIGN: finding local similarities by multiple sequence alignment. Bioinformatics 14:290–294

    Article  CAS  PubMed  Google Scholar 

  • Moura JCMS, Bonine CAV, De Oliveira Fernandes Viana J, Dornelas MC, Mazzafera P (2010) Abiotic and biotic stresses and changes in the lignin content and composition in plants. J Integr Plant Biol 52:360–376

    Article  CAS  PubMed  Google Scholar 

  • Pickel B, Pfannstiel J, Steudle A, Lehmann A, Gerken U, Pleiss J, Schaller A (2012) A model of dirigent proteins derived from structural and functional similarities with allene oxide cyclase and lipocalins. FEBS J 279:1980–1993

    Article  CAS  PubMed  Google Scholar 

  • Ralph S, Park JY, Bohlmann J, Mansfield SD (2006) Dirigent proteins in conifer defense: gene discovery, phylogeny, and differential wound- and insect-induced expression of a family of DIR and DIR-like genes in spruce (Picea spp.). Plant Mol Biol 60:21–40

    Article  CAS  PubMed  Google Scholar 

  • Ralph SG, Jancsik S, Bohlmann J (2007) Dirigent proteins in conifer defense II: extended gene discovery, phylogeny, and constitutive and stress-induced gene expression in spruce (Picea spp.). Phytochemistry 68:1975–1991

    Article  CAS  PubMed  Google Scholar 

  • Riggleman RC, Fristensky B, Hadwiger LA (1985) The disease resistance response in pea is associated with increased levels of specific mRNAs. Plant Mol Biol 4:81–86

    Article  CAS  PubMed  Google Scholar 

  • Rizzon C, Ponger L, Gaut BS (2006) Striking similarities in the genomic distribution of tandemly arrayed genes in Arabidopsis and rice. PLoS Comput Biol 2:e115

    Article  PubMed  PubMed Central  Google Scholar 

  • Saeed A, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M (2003) TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34:374

    CAS  PubMed  Google Scholar 

  • Santner A, Estelle M (2009) Recent advances and emerging trends in plant hormone signalling. Nature 459:1071–1078

    Article  CAS  PubMed  Google Scholar 

  • Santner A, Estelle M (2010) The ubiquitin-proteasome system regulates plant hormone signaling. Plant J 61:1029–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi H, Liu Z, Zhu L, Zhang C, Chen Y, Zhou Y, Li F, Li X (2012) Overexpression of cotton (Gossypium hirsutum) dirigent1 gene enhances lignification that blocks the spread of Verticillium dahliae. Acta Biochem Biophys Sin 44:555–564

    Article  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Jha SK, Bagri J, Pandey GK (2015) ABA inducible rice protein phosphatase 2C confers ABA insensitivity and abiotic stress tolerance in Arabidopsis. PLoS ONE 10(4):156–162

    Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Wang Z, Xu Y, Joo SH, Kim SK, Xue Z, Xu Z, Wang Z, Chong K (2009) OsGSR1 is involved in crosstalk between gibberellins and brassinosteroids in rice. Plant J 57:498–510

    Article  CAS  PubMed  Google Scholar 

  • Wu R, Wang L, Wang Z, Shang H, Liu X, Zhu Y, Qi D, Deng X (2009) Cloning and expression analysis of a dirigent protein gene from the resurrection plant Boea hygrometrica. Prog Nat Sci 19:347–352

    Article  CAS  Google Scholar 

  • Xia ZQ, Costa MA, Proctor J, Davin LB, Lewis NG (2000) Dirigent-mediated podophyllotoxin biosynthesis in Linum flavum and Podophyllum peltatum. Phytochemistry 55:537–549

    Article  CAS  PubMed  Google Scholar 

  • Ye ZH, Varner JE (1991) Tissue-specific expression of cell wall proteins in developing soybean tissues. Plant Cell 3:23–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye ZH, Song YR, Marcus A, Varner JE (1991) Comparative localization of three classes of cell wall proteins. Plant J 1:175–183

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Lee C, Zhong R, Ye ZH (2009) MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis. Plant Cell 21:248–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu JK (2003) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Fund 2015HH0032 (An international co-operation Project Supported by Science and technology Department of Sichuan Province) to RJ Chen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongjun Chen.

Ethics declarations

Conflict of Interest

Yongrong Liao, Shengbin Liu, Yunyun Jiang, Changqiong Hu, Xuewei Zhang, Xufeng Cao, Zhengjun Xu, Xiaoling Gao, Lihua Li, Jianqing Zhu, and Rongjun Chen declares that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Yongrong Liao and Shengbin Liu contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, Y., Liu, S., Jiang, Y. et al. Genome-wide analysis and environmental response profiling of dirigent family genes in rice (Oryza sativa). Genes Genom 39, 47–62 (2017). https://doi.org/10.1007/s13258-016-0474-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-016-0474-7

Keywords

Navigation